

AFRL-IF-RS-TR-2003-178

Final Technical Report
August 2003

ULTRA-HIGH CAPACITY NETWORKING
ENABLED BY OPTICAL TECHNOLOGIES

Drexel University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J181

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-178 has been reviewed and is approved for publication.

APPROVED:
PAUL SIERAK
Project Engineer

 FOR THE DIRECTOR:

WARREN H. DEBANY JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
AUGUST 2003

3. REPORT TYPE AND DATES COVERED
Final Nov 99 – Sep 02

4. TITLE AND SUBTITLE
ULTRA-HIGH CAPACITY NETWORKING ENABLED BY OPTICAL
TECHNOLOGIES

6. AUTHOR(S)
Stewart Personick

5. FUNDING NUMBERS
C - F30602-00-2-0501
PE - 62110E
PR - J181
TA - 23
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Drexel University
3141 Chestnut Street
Philadelphia Pennsylvania 19104

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-178

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Paul Sierak/IFGA/(315) 330-7346/ Paul.Sierak@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Project Pegasus, as this project came to be called, consisted of collaborative work in the following four areas:
exploration of a novel internet protocol packet router using waveguide grating router devices; research into next
generation internet backbone networks that are scalable by 1000 time the aggregate capacity of current internet
backbone networks; development of applications requiring very high speed networking that enable leading edge
research; and finally the design and demonstration of an all optical regenerator based upon terahertz optical asymmetric
demultiplexes.

15. NUMBER OF PAGES
411

14. SUBJECT TERMS
IP Optical Packet Router, Terhertz Optical Asymmetric Demultipler, TOAD, Optical
Backbone Network 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

A. EXECUTIVE SUMMARY / INTRODUCTION ..1

B. ULTRA HIGH CAPACITY IP ROUTER ...2

b.1 Ultra High Capacity IP Router (Martin Zirngibl, et. al.) ...2
Overview .. 2
Early and intermediate results: ... 3
Final results: ... 4

C. ARCHITECTURE ..5

c.1 Network Congestion and QoS Management Strategies (Stewart Personick, et. al.).....5

c.2 QoS Architectures and Mechanisms (Harish Sethu, et. al.) ..8
Conceptual advances .. 8
Algorithmic advances ... 8
Engineering implications.. 8
Results .. 9
Insights derived and lessons learned .. 12

c.3 Embedded Network Processing (Jonathan Smith, et. al.) ...13
Background... 13
ABIDE.. 14
PIGLET .. 14
Summary .. 15

c.4 IP over WDM (Mohamed Ali, et. al.) ..15
Background... 15
Results .. 16
Lessons learned .. 19

c.5 Network Traffic Modeling (Stewart Personick, et. al.)..20
Background... 20
Progress .. 21

c.6 Wavelength Agility and Optical Networks (Bahram Nabet, Janet Jackel, et. al.).21
Wavelength-selective optical detector (B. Nabet, et. al) .. 22
Wavelength agility in optical network elements (Janet Jackel, et. al.) .. 22
Background... 22
Results .. 23
Lessons learned .. 32

D. BIO-INFORMATICS AND BIO-COMPLEXITY APPLICATIONS ...34

d.1 Distributed Neuroanatomical Database (J. “Yoni” Nissanov, et. al. and Susan
Davidson, et. al.) ..34

 ii

d.2 Cellular Observatory (J. Yasha Kresh, Banu Onaral, et. al)..35
Part I - Telemic Software Development. .. 36
Part II—Cellular Network Dynamics ... 38
Enhancements and Improvements .. 41
Telemicroscopy Software version 2.0 .. 43
New Horizons... 45
Live Cell Microscopy- Summary of Results and Lessons Learned.. 46

d.3 Gbps Infrastructure (Stewart Personick, et. al.; Dom Imbesi, et. al.)47

d.4 Global Digital Mapping (Somerset Geographics: Brian Schmult)48

d.5 MONET East Ring (Lucent) ..51

E. ALL-OPTICAL NETWORKING DEVICES AND SUBSYSTEMS ..52

e.1 All-Optical Networking Devices and Subsystems (Paul Prucnal, et. al.)52
Optical pulse width management / format converter.. 52
Experiments to test a method for reducing data timing jitter, for use in our proposed 3R regenerator52
All-Optical Clock Recovery ... 57

REFERENCES (GROUPED BY REPORT SECTION) ...62

APPENDIX (REPRESENTATIVE PUBLISHED PAPERS)...69

 iii

List of Figures

Figure 1: Lucent WGR-based Router ... 2
Figure 2: Combined Deterministic and Statistical Switching ... 7
Figure 3: Combined Deterministic and Statistical Switching Node ... 7
Figure 4: Time response to femtosecond laser with wavelength of 850 nm... 22
Figure 5a: A waveband add/drop that is constructed from wide passband Bragg gratings 25
Figure 5b: Measured transmission and reflection for a fiber Bragg grating with a performance

appropriate for a waveband add/drop... 26
Figure 6: Waveband add/drop based on a dynamic band blocker... 27
Figure 7: Schematic picture of liquid crystal switch used as dynamic beam blocker or band

add/drop. Input and output spectra are shown. .. 28
Figure 8: Band add/drop based on a the liquid crystal switch ... 29
Figure 9: Comparing the passbands of two types of band selectors with the spectrum of a four-

wavelength source used to fill the band. .. 31
Figure 10: Power in each of two orthogonal polarizations for wavelengths within a band and in

different bands, after 76 km of fiber in a laboratory, where all wavelengths entered the
fiber in the same polarization. .. 31

Figure 11: Cellular Observatory Remote-Access Graphical User Interface 38
Figure 12: Formation of robots changing shapes... 40
Figure 13: Improved GUI .. 44
Figure 14: Live adult human (mesenchymal) stem cells co-cultured with human cardiac

myocytes ... 47
Figure 15: TOAD Schematic .. 52
Figure 16: Experimental Setup for Timing Jitter Reduction... 53
Figure 17: Input to the TOAD, with added timing jitter... 54
Figure 18: The output of the TOAD, when we inject a third wavelength of CW light into the

TOAD.. 54
Figure 19: The output after the TOAD, with the CW bias light level set at: +7dBm 55
Figure 20: BER vs. CW power... 56
Figure 21: BER vs. SOA current ... 56
Figure 22: All-optical 3R Regenerator .. 57
Figure 23: Experimental structure of mode-locked figure-eight laser using a TOAD 58
Figure 24: Waveform and spectrum of the mode-locked output pulses .. 59
Figure 25: Pulse width, spectrum, and time-bandwidth product vs. the Offset of the SOA in the

TOAD [10 ps input pulses].. 60
Figure 26: Pulse width, spectrum, and time-bandwidth product vs. the Offset of the SOA in

the TOAD [5 ps input pulses] ... 61

Table 1: Summary of Wavelength Conversion Alternatives... 30
Table 2: US Coverage by DOQQ... 50

 iv

Acknowledgement

The researchers who contributed to Project Pegasus wish to thank the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Research Laboratory for their support of
this research. In particular, we wish to thank Dr. Mari Maeda who led the Next Generation
Internet initiative at DARPA, and who sponsored and guided this research.

The researchers also wish to thank their respective universities and firms for providing their
support.

 1

A. Executive Summary / Introduction

Project Pegasus (Ultra-High Capacity Networking Enabled by Optical Technologies) is a
research program that was conducted from September 1999 to September 2002. It was sponsored
by DARPA under the DARPA Next Generation Internet initiative, and funded under a contract
to Drexel University from the US Air Force Research Laboratory.

There are four (4) major components of Project Pegasus:

The construction and demonstration of proof-of-concept-viability of a novel approach for
constructing ultra-high-capacity Internet protocol, IP, packet routers using a passive optical
device called a waveguide grating router, WGR.

The exploration and creation of technologies, methodologies, architectures, and insights for the
implementation of next generation Internet backbone networks that will: scale to 1000 times the
aggregate capacity of today’s Internet backbone networks; be able to provide quality-of-service
(specified limits on delay, loss, and delay jitter) guarantees in an efficient manner; be technically
viable and cost effective, and that will be viable from a network management perspective,

The design, and implementation of compelling prototype applications of very high speed
networking (>100 Mbps) by subject matter experts in fields outside of the domains of electrical
engineering and computer science so as to demonstrate the ability of very high speed networking
to enable leading edge research in other fields.

The design and demonstration of applications of Terahertz Optical Asymmetric Demultiplexer,
TOAD, devices in the implementation of an all-optical digital regenerator that includes:
reshaping, re-clocking, and regeneration, all in the optical domain.

The WGR-based ultra-high-capacity router research was conducted by Martin Zirngibl, et. al., of
Lucent Technologies. The technologies, methodologies, architectures, and insights research was
conducted by: Stewart Personick, Harish Sethu, Bahram Nabet, et. al., of Drexel University;
Jonathan Smith, et. al., of the University of Pennsylvania; Mohamed Ali, et. al., of The City
College of the City University of New York; Janet Jackel, et. al, of Telcordia Technologies, and
Al Schneider, of Verizon. The prototype application design and implementation research was
conducted by: Banu Onaral, J. Yasha Kresh, Jonathan Nissanov, et. al., of Drexel University and
MCP Hahnemann University (now part of Drexel University); Susan Davidson , et. al, of the
University of Pennsylvania; Brian Schmult, of Somerset Geographics; and Dom Imbesi, et. al. of
Lucent Technologies. The all-optical regenerator research was conducted by Paul Prucnal, et. al.,
of Princeton University.

 2

B. Ultra High Capacity IP Router

b.1 Ultra High Capacity IP Router (Martin Zirngibl, et. al.)

Overview

The objective of this research is to demonstrate proof-of-concept viability of an ultra high
throughput (>1 billion packets per second) packet router, with a large number of input and output
ports (>128 x 128), that employs a core packet routing fabric that consists of: an all-passive
waveguide grating router, WGR, wavelength-tunable transmitters with a wavelength tuning time
of a small fraction of the duration of a single packet (<100 ns), and optical receivers capable of
adjusting themselves to incoming packets having different power levels and a range of relative
delays (see figure 1).

Figure 1: Lucent WGR-based Router

The prospective benefit of this router over conventional routers with electronic core switching
fabrics is the ability to interconnect a large number of input and output modules (that can be
physically separated) via optical fibers terminating on a completely passive core interconnect
fabric. This eliminates two very challenging physical design problems of conventional
approaches: rapidly increasing levels of heat production and crosstalk as the numbers of ports
and the port data rates increase.

Lucent WGR-based Router
M. Zirngibl, et.al.

Transmitter Modulato

Modulato

Modulato

Receiver

Receiver

Receiver

Receiver

Clock

Buffer

Contro
l

Data from Input Port

To Output Port Driver
Polarization
Controllers

WGR

Transmitter

Transmitter

ModulatoTransmitter

 3

The prospective benefit of this router over proposed “all-optical” router concepts is that optical
components are not used to perform packet buffering and packet alignment functions. It is an
extremely difficult, unsolved challenge to design a practical all-optical buffer, with sufficient
buffer delay and packet capacity. The known applications for a packet router that does not have
the ability to buffer incoming packets are very limited.

The technical challenges for concept viability are:

a. Designing and demonstrating reproducible and reliable waveguide grating routers,
WGRs, with a large number of input and output ports (>128 x 128), low crosstalk
between the optical signals passing through the WGR, as measured at the output ports of
the router (< -25 dB), low insertion loss (<10 dB), low path-dependent insertion loss
variability (< 3dB), low polarization-dependent loss (<1 dB), low polarization-dependent
dispersion (< 1ps).

b. Designing tunable laser transmitter modules with a sufficiently wide tuning range (>256
x the wavelength spacing associated with the WGR), a sufficiently fast tuning time (<100
ns), a stable relationship between the wavelength emitted and the wavelength control
signal values, and that can be modulated at very high data rates (> 40Gbps)

c. Designing optical receivers that can quickly adjust (< 10ns) to the optical power level and
relative delay of an incoming optical packet, and that operate at very high data rates (>40
Gbps)

d. Designing a router control architecture and associated routing algorithms that scales in a
computationally tractable manner as the number of input and output ports increases.

The research results reported here were produced over an approximately one-year period during
which this research was partially funded under this project (Pegasus). This research has
continued, at Lucent Technologies, subsequent to the end of the period in which partial funding
was provided under this project.

Early and intermediate results:

A 100x200 WGR was successfully assembled. The measured insertion losses ranged between 7
and 9 dB. In this first 100x200 WGR the adjacent cross-talk was -15 / -20 dB while the average
cross-talk was less than -30 dB. The polarization dependence has been completely removed from
smaller test routers present on the same wafer. This shows that even in the larger device this
impairment can be corrected.

The design of a new 80x80 WGR was completed. Improvements over the previous design are:
polarization independence, reduced next-neighbor cross-talk (-30 to –35 dB) and uniform
channel spacing.

100 channels were calibrated on the first tunable-laser transmitter board (i.e., the relationship of
the wavelength to the applied wavelength-control current, for 100 discrete wavelength-current
pairs was determined). Two more tunable-laser transmitter boards were built, and 80 channels on
a second tunable-laser transmitter board have been calibrated. The tuning range for the second
tunable laser transmitter is 95 nm. A wavelength locker is being developed to perform
wavelength stabilization.

 4

Of three circuit boards designed to perform the buffering and scheduling, the first one has been
built and tested. 10 Gb/s data patterns have been generated with this board.

A systems experiment has been performed to demonstrate optical switching of data packets. The
experiment used one transmitter and the first 80x80 WGR. A total throughput of 1 Tb/s could be
projected with the used components. The results were presented as a post-deadline paper at
ECOC 2000 [1].

Final results:

Progress on the Waveguide Grating Router (WGR)
Two different kinds of 40x40 WGRs were fabricated, both including integrated wavelength-
monitoring capabilities. One type of device with non-cyclic response (fully packaged) shows
insertion losses smaller than 3.5 dB while the version with cyclic response has approximately 8
dB of insertion loss. Polarization-dependent loss, PDL, is less than 0.3 dB and polarization
dispersion, PD, is negligible. The crosstalk has been reduced to unprecedented low levels:
adjacent cross-talk <-32 dB and background cross-talk level close to –50 dB.

Progress on the wavelength-tunable laser transmitter:
An improved drive circuit, with current amplification, was designed and implemented on the
laser-driver circuit boards. The switching speed, for all before-after channel combinations, has
been measured with this board. The laser switching performance was greatly improved over the
previous results. Another version of the circuit board has been redesigned with more advanced
digital electronics that allow on-board programming of the calibration lookup table. A
wavelength locker is being developed to perform wavelength stabilization and channel
calibration.

Progress on the receiver:
Various burst-mode clock and data recovery schemes are being evaluated and tested. Optical
packet switching at 10 Gb/s has been performed to test the fast clock recovery. The recovery
time was between 40 and 200 bits. Clock recovery modules at 40Gb/s are currently being
developed.

Progress on the scheduler and interface part:
Work on an ASIC that serves as a scheduler and as a low speed interface to the fabric was
started. The top-level architecture of this ASIC has been designed and implementation details
were investigated. 40 Gb/s electronics have been designed. A first version of 40 Gbps transmitter
electronics is operational, and was tested. The receiver electronics were also tested.

Progress on the architecture:
The top-level line card architecture has been finalized and details were refined. The scheduler
architecture has been further refined, and performance and stability of the developed algorithms
was tested by simulations. Concepts have been developed for extended architectures with
increased throughput of hundreds of Tb/s.

 5

C. Architecture

This research is focused on the exploration of fundamental changes to the architecture and design
methodologies for next generation Internets that might be required or desirable to meet the
challenges of: scaling the aggregate Internet backbone capacity by a factor of 1000, and
providing quality of service guarantees (packet delay, packet loss probability, maximum outage
duration, delay jitter, etc.) for heterogeneous Internet traffic [9].

c.1 Network Congestion and QoS Management Strategies (Stewart Personick,
et. al.)

This research is focused on the challenges of scaling routers to large aggregate throughputs (>1
billion packets per second) and providing varying levels of packet routing quality of service
(buffering delay and packet loss) while maintaining reasonably efficient utilization of the most
expensive router resources.

We have taken an “engineering” approach by focusing on what we want to achieve in terms of
router performance (as perceived by the users and operators of networks that employ routers) in
next generation backbone networks. We then looked for new approaches to routing that
recognize the different engineering tradeoffs that may be appropriate to next generation
networks.

We have attempted to find new ways of using optical components in combination with electronic
components that leverage the strengths of each. We have attempted to move beyond existing “all
optical switching” concepts that are limited by their lack of a viable solution to the packet
buffering requirement of real networks.

We have focused a great deal of time and thought on the issue of: whether or not there is a
network architecture that can gainfully employ bufferless routers. We have not found any
network design approaches that can do so, without pushing the buffer problem to the network
elements that are feeding their inputs. In the case of the waveguide grating router (see section B
of this report), pushing the buffering problem from the core switching fabric back to the co-
located port modules is a good example of a router design approach that combines the strengths
of optical and electronic components. However, the complete router in that case is the
combination of the optical core switching fabric and the electronic port modules. The team
designing the WGR-based router knows that one cannot define a router as just the optical core.

After much thought and analysis, we have focused on a concept for combining deterministic
packet switching (leveraging time-division-switching concepts and theory) with conventional
store-and-forward statistical packet switching. This has numerous engineering advantages, such
as a single, combined hardware routing platform; the ability to set up virtual circuits with fixed
delays; the ability to provide priority and un-interrupted service to the virtual circuit traffic via
the store-and-forward traffic; and the ability to utilize unneeded virtual circuit capacity on the
network links for store-and-forward traffic.

 6

The concept is based on the use of fixed length time slots (to hold packets or packet fragments)
on links between switching nodes; where some number, N, of time slots fall within a repeating
cycle of time slots. Each time slot can be allocated to deterministically switched (circuit-
switched) packet traffic, or conventional statistically-switched packet traffic. Deterministic
traffic passes through a series of time slot interchangers, TSIs, and time divided switching
fabrics. as in conventional time-division-switching. Time slot interchangers are required to
resolve contention that occurs when two incoming packets, destined for the same output port,
arrive in the same time slot on two different input ports. Store-and-forward statistically switched
traffic passes through a conventional router fabric, where it is buffered and queued for access to
an available slot on its desired outgoing port. Figure 2 and 3 conceptually portray the
combination of deterministic and statistical switching.

An overview of the motivation for using combined deterministic packet (or burst) switching and
statistical packet (or burst) switching in next generation Internet backbone networks, and the
potential technical advantages of this approach in moving toward routers/switches with higher
throughput capabilities, lower/deterministic latency, and improved quality of service, QoS, as
well as the improved feasibility of employing optical buffers to perform the required time-slot-
interchange function, was presented at the 2001 Topical Meeting on Photonics in Switching,
Monterey CA , June 13-15, 2001 [10].

A preliminary patent application was filed with the U.S. Patent and Trademarks Office, which
disclosed the overall concept and enabling implementation details. The patent application
specification (following up on the preliminary patent application) was completed as of
September 30, 2001. The patent application was filed with the U.S. Patent and Trademarks
Office the first week of October 2001.

 7

Figure 2: Combined Deterministic and Statistical Switching

Figure 3: Combined Deterministic and Statistical Switching Node

Time Slot
[Accommodates 1 fixed length packet or burst]

Switching Node Switching Node

Cycle [1/R seconds]

Time Slot
[Accommodates 1 fixed length packet or burst]

Switching Node Switching Node

Cycle [1/R seconds]

Packets

Time Slot
[Accommodates 1 fixed length packet or burst]

Switching Node Switching Node

Cycle [1/R seconds]

Time Slot
[Accommodates 1 fixed length packet or burst]

Switching Node Switching Node

Cycle [1/R seconds]

Packets

TSITSI

Router

Separate circuit switched and
packet switched traffic

Combine circuit switched and
packet switched traffic

Packets

TSITSI

Router

Separate circuit switched and
packet switched traffic

Combine circuit switched and
packet switched traffic

TSITSI

Router

Separate circuit switched and
packet switched traffic

Combine circuit switched and
packet switched traffic

Packets

 8

c.2 QoS Architectures and Mechanisms (Harish Sethu, et. al.)

The goal of this research is to facilitate the evolution of the future Internet as a scalable high-
performance infrastructure for multimedia communications with differentiated levels of service.
To this end, we seek novel advances in three complementary and interdependent areas:
conceptual advances that allow crisp definitions of QoS parameters and requirements;
algorithmic advances that improve upon earlier methods of achieving QoS; and finally the
implications of these on the design of routers, switches and system architectures.

Conceptual advances
An important conceptual advance is in developing an understanding of the true requirements of
multimedia traffic under new emerging Internet service models such as Integrated and
Differentiated services. While several service models have been defined by the Internet
Engineering Task Force, IETF, mechanisms, such as scheduling disciplines and traffic
management algorithms to support these services, do not yet exist. However, devising new
mechanisms requires non-trivial conceptual advances in actually determining the requirements to
be placed on these mechanisms. Our work provides a set of these requirements for a few popular
service classes such as the controlled load service in Integrated Service, IntServ, and the
expedited forwarding – per hop behavior, EF-PHB, in Differentiated Services, DiffServ.

A second conceptual advance is with regard to fairness, since the most basic guarantee desired
by any flow is fairness in the treatment of its packets. Fairness has been well-studied in the
context of sharing bandwidth on a link. However, flows share more resources than just
bandwidth on a link, and therefore, there is a need to make a conceptual leap and define a more
over-arching principle of network behavior that includes guidelines for sharing buffers or CPU
cycles. Our work provides this conceptual advance, and presents a theory of fairness that is
significantly more generalized than the classic principles commonly cited today. In particular, we
define what is fair in buffer allocation, and also what is fair in the distribution of CPU cycles in
routers and switches.

Algorithmic advances
Scheduling disciplines are critical to the quality of service attained by multimedia traffic. We
developed new scheduling algorithms that improve upon the following: fairness, latency,
scalability and efficiency. Properties of the new algorithms have been analytically proven and
established, with further verification by simulation. The goal of our work is to come up with new
algorithms that are efficient and scalable, and therefore, our work restricts itself to the design of
algorithms with a work complexity of O(1) with respect to the number of flows. New scheduling
algorithms, that have been devised, complement our conceptual advances, and together with the
study of engineering implications, lead toward a complete solution.

Engineering implications
This relates to the hardware, software or architectural means by which new algorithms and
conceptual advances will eventually be realized. The goal of this work is to provide complete
solutions to the quality of service issues tackled, and therefore, our goal is to ensure the
engineering feasibility of the new advances. To this end, we perform research on the relevant

 9

engineering implications and study the practicality of the new algorithms and architectural
strategies developed as part of our work. For example, in our research on a new scheduling
discipline for the controlled load service in the Internet, we also analyzed the hardware/software
implementation scenarios and the associated complexities.

Results
We developed a set of economically based principles and associated mechanisms that routers
should use to handle traffic with a heterogeneous set of QoS requirements. There are at least two
economic principles that one can use in determining the equivalence between the diverse
requirements of multiple flows. When the resource availability is adequate, one could try to
equalize the satisfactions achieved by flows at any given instant of time (through maximizing the
Gini index, a popular measure of inequality in economics). When the resources available are
inadequate, one could maximize the sum of the satisfactions of all the flows, thus sacrificing a
few heavy consumers to the benefit of many light consumers. In the case of bandwidth allocation
in the presence of adequate bandwidth, we are currently devising a practical algorithm that can
maximize the Gini index and thus achieve almost perfect fairness and very tight delay bounds.
The algorithm, and our principle allow extrapolation into a variety of resource allocation
problems besides bandwidth allocation. Our work is ongoing on applying the same principle for
allocations based on deterministic delay requirements. Our work is also ongoing on the policies
to use in the absence of adequate resources.

We developed a router/switch architecture that is scalable as the bandwidth of the link grows to
something significantly more than the software or the internal memory access speeds can sustain.
For example, with the advent of optical networking, we are presented with a situation where the
memory speed, in switches, is significantly lower than the link speeds. I.e., the number of bits
that have to be moved in and out of memory per unit time is much larger than the memory
read/write cycle speed. A solution to this problem is to implement wide memories (large number
of bits read/written per operation); however, this introduces the problem of memory
fragmentation since most packet lengths may be smaller than the width of the memory itself. A
practical solution, which has been adopted by some switch designers in the industry, is to design
multiple memory modules to replace each single module. For example, the shared buffer in a
switch will be implemented as a set of independent memory modules, which can all be read or
written independently. Achieving good throughput is a challenge with such an architecture. We
have developed a scheduling algorithm that one can use between the input ports and the memory
modules, and also between the modules and the output ports. The operation of a switch with
these multiple modules allows a scalable evolution of switch architectures to support very high-
speed links such as fiber.

The fairness of scheduling disciplines has often been evaluated using one of two fairness
measures: the absolute fairness bound, AFB, and the relative fairness bound, RFB. The RFB is
the more popular measure since it is easier to obtain. We have established a tight bounded
relationship between these two measures, and therefore, it is now easy to determine the latency
of a scheduler directly from the RFB. Our results also indicate that in many real contexts, these
two measures approach each other as the number of flows increases. This shows that the RFB,
often considered an imprecise measure of fairness, is actually a perfectly adequate measure in
real contexts.

 10

We have also developed a novel scheduling strategy for use in systems where data blocks (for
e.g., cells) can be forwarded independently, but where it is advantageous to forward related data
blocks together (for e.g., cells that make up a packet). Such situations arise in Internet backbones
with Internet Protocol, IP, implemented over asynchronous transfer mode,ATM, and also in
wormhole networks used in multimedia servers where each packet is divided into chunks which
are forwarded independently to achieve improved delay bounds. Our scheduling strategy
combines a number of established principles to achieve both fairness and low delays in the
resulting system.

We have significantly expanded upon our previous work on scalable fair scheduling algorithms,
and developed scheduling strategies with much better latency characteristics. In the early part of
this project, we developed the Elastic Round Robin, ERR, a fair scheduling strategy for best-
effort traffic. At the time of its invention, ERR had superior fairness and delay characteristics in
comparison to all other algorithms of equivalent efficiency. However, being a round robin
strategy, it suffers from certain limitations of all round robin algorithms. One such limitation is
the bursty nature of its transmissions which leads to large delay jitter values, thus rendering it
less suitable for multimedia application traffic. In our latest work, we have developed a
significant enhancement to our previous work, a new scheduling discipline that we call the
Prioritized Elastic Round Robin, PERR. The ERR scheduler, in its normal operation, serves the
active flows in a round robin order. In PERR, however, a prioritizing module is appended to the
original ERR scheduler. The associated priority queues alter the transmission sequence of the
packets in ERR by giving precedence to flows which are lagging in service in comparison to
other flows. The total service received by a flow in a PERR round is the same as it would have
received in the corresponding round if served by an ERR scheduler. However, in PERR, the
service received by a flow is split into several parts over the course of a round. Our analysis
shows that PERR results in a significant improvement in the latency and fairness characteristics
in comparison to ERR as well as certain recently proposed algorithms such as Pre-order Deficit
Round Robin. PERR is also easy to implement because of its low O(1) work complexity. PERR
also achieves a significant reduction in the buffer requirements in comparison to Pre-order
Deficit Round Robin.

We have also contributed to a growing body of literature on the practical aspects of scheduling
algorithms. Fair scheduling strategies have often been designed with a focus toward minimizing
the latency bound. However, many playback multimedia applications adapt their playback delay
to currently observed jitter and delay characteristics in order to maximize the length of time over
which the receiver of the multimedia stream obtains good quality. It is therefore important to
consider not just the latency bound but the distribution of the latency achieved by any given
scheduling algorithm. In the first work of its kind, we have determined the latency distribution of
the Deficit Round Robin scheduler. We have shown that the latency distribution is primarily
dependent upon the quanta used by other flows. In addition, we show that when the number of
flows is large the distribution can be more easily obtained by a two-step approximation. Our
work shows that the playback buffer used at the receiver can be significantly reduced if the
latency distribution is taken into account, as compared to considering only the latency bound.

 11

We have continued to make progress on practical scheduling algorithms to support QoS
mechanisms and architectures. A popular measure of the fairness achieved by packet schedulers
is the relative fairness bound, RFB, which captures the maximum possible difference between
the normalized services received by any two flows. However, in the actions taken at packet
transmission boundaries, currently known schedulers have generally used a goal other than
explicitly reducing the RFB; for example, weighted fair queing, WFQ, seeks to achieve the same
order of packet transmissions as in an ideally fair fluid flow system. In our work, we have
developed Greedy Fair Queueing, GrFQ, a novel scheduler that explicitly incorporates the goal
of achieving a low RFB into the actions of the scheduler. We have proved that the RFB achieved
by GrFQ is extremely close to that of the best among known fair schedulers. While worst-case
fair weighted fair queing, WF2Q, achieves the best possible bound on the service lag in
comparison to a fair fluid flow scheduler, the GrFQ scheduler achieves a better bound on the
normalized lag, and is therefore, more fair by this measure. We further argue that measures based
on the RFB or on the lag are only bounds, and do not completely capture the actual fairness
achieved at most instants of time. We borrow from the field of economics and use the Gini index
to show that our scheduler achieves better fairness than any other known scheduler at virtually
all instants of time with both synthetic traffic and real video traffic traces. The GrFQ scheduler is
also computationally efficient since it avoids the emulation of a fluid flow system and has a per-
packet work complexity of O(log N) with respect to the number of flows.

The original motivation behind this work was the development of an overall goal-oriented
strategy that may be employed to achieve any of several notions of fairness or any other target
policy. The above represents our work in the evaluation of this strategy for max-min fairness as
the target policy, which has yielded a computationally efficient scheduler with better fairness
characteristics than any other known scheduler. Our work continues to employ this strategy to
achieve admission control and scheduling policies beyond fairness.

We have continued to make progress on practical scheduling algorithms to support QoS
mechanisms and architectures, and completed work specifically targeted for emerging QoS
architectures in the Internet. Our work makes use of concepts in economics, such as social
welfare, to create economically viable models of router behaviors. In addition, we have tried to
employ pricing is an effective tool to control congestion and achieve QoS provisioning for
multiple differentiated levels of service. We have significantly revised and refined our work on a
novel, practical, flexible and computationally simple pricing strategy that can achieve QoS
provisioning in Differentiated Services networks with multiple priority classes operating at close
to peak efficiency, while also maintaining stable transmission rates from end-users. In contrast to
previous work, in which dynamic pricing strategies are based on the state of congestion alone,
our strategy adds a separate price component for the preferential service received by a packet.
This permits an efficient market for network resources and services, with the price charged
dependent upon both the cost of the resources and the dynamically changing demand for it. This
automatically enforces efficient capacity management in the allocation of resources among the
various service classes, also leading to a user-centric approach where a user is not charged a
higher price unless preferential service is actually delivered.

 12

Insights derived and lessons learned

Our QoS research as part of the Pegasus project has led us to several engineering insights.
However, the most important insight gained through the work conducted as part of this project is
regarding the relevance of considering and incorporating economic incentives into the
engineering design process. During the last several years, QoS issues in the Internet have
attracted significant research interest and have resulted in at least a few important proposals for
achieving QoS through innovative protocols, architectures and algorithms, including some that
have resulted from the work conducted as part of this project. Unfortunately, we have noticed
that a complex set of factors---the inertia of the marketplace driven by open, therefore somewhat
frozen, standards, insufficient evidence of a strong customer base, the nominal adequacy of
existing solutions and the highly competitive environment that emphasizes short-term
performance goals for companies---have all together placed practical hurdles in the actual
adoption of many of these proposals. Besides solutions based purely in engineering, a number of
proposals have been advanced that seek to achieve QoS through economic means, such as through
pricing. However, pricing strategies have not been studied within the context of engineering
mechanisms that need to be in place to support the strategy through secure and scalable billing
and accounting procedures. While solutions based in engineering alone are encountering
difficulties in gaining widespread adoption due to a variety of reasons, solutions based on pricing
alone have similarly gained no greater acceptance in the marketplace because they haven’t
considered the engineering hurdles involved. Good engineering design that has a true impact on
the marketplace through actual adoption should consider built-in economic incentives in addition
to offering engineering viability. As part of this project, we have proceeded in this direction and
developed a practical, flexible and computationally simple and scalable pricing strategy that can
achieve QoS provisioning in Differentiated Services networks with multiple priority classes at
close to peak efficiency, while also maintaining stable transmission rates from end-users. Our
work in this direction continues today and applies this insight in other aspects of networking
besides QoS. For example, “route storms” and related routing inefficiencies in the Internet, we
believe, can be substantially eliminated with a pricing framework among backbone providers
that exploits economic incentives for carrying transit traffic.

In the following, we mention a few other insights gained through this project:

Much of the research on network considers the impact of self-similar characteristics of traffic
on the performance of the network but not the impact of the network on the characteristics of
the offered traffic. There exists, however, a complex interaction between the network traffic
characteristics and the network at multiple layers of the protocol. Even at the simple link layer
and the network layer, our research demonstrates that a packet switched network adds to the
self-similarity of non-self-similar traffic and reduces the self-similarity of highly self-similar
traffic. A closed-loop analysis of the interactions between the network and the traffic
characteristics is essential to further our understanding of the implications of network design
choices.

Fair queuing has been defined for a fair allocation of bandwidth on a link. As flows of traffic
traverse through a network, they share with other flows a variety of network resources
including links, buffers and router CPUs in their paths. Fair queuing is only fair when the link
resource (bandwidth) is the only scarce resource. When buffers and/or the processing power

 13

are scarcer, such as in optical networks, new principles need to be developed to achieve
fairness and quality of service requirements. Another example is a situation in mobile ad hoc
networks for military applications where both bandwidth and energy (for survivability) are
scarce resources. When more than one resource is scarce, it may or may not be possible to
trade off one resource for another, and the issue of fairness becomes significantly more
complex. Fair queuing used in bandwidth allocation does not always lead to fairness, or
reliable quality of service guarantees.

The current trend in QoS provisioning strategies is to avoid per-flow reservations to reduce
the overhead of network management and to allow a more dynamic and efficient use of
network resources. In the absence of reservations, the network devices have to implement
policies to appropriately satisfy QoS requirements whenever the demand for a network
resource exceeds the supply. These policies cannot merely degrade the performance of all
users upon encountering congestion for resources, since it leads to a poor economic model. A
good example can be found in telephone networks, where it is better to deny service to some
users through blocking and serve admitted calls at a high quality, instead of admitting and
serving all calls at a poorer quality. However, research efforts on policies for QoS
provisioning have primarily focused on this model and tried to equalize the service received
by all users (such as in fair queuing). An altogether new approach such as through a strategy
to maximize social welfare (by maximizing the sum of the consumer surpluses) may lead to
very different policies than those discussed in the research literature, and may actually be
more efficient and more likely to be adopted when QoS provisioning for multimedia
transmissions becomes significantly more important to Internet users.

c.3 Embedded Network Processing (Jonathan Smith, et. al.)

Background

The research challenge was the mismatch between network performance and processor
performance. While processor performance increases at an impressive rate (essentially doubling
every 18 months), network performance as measured by the total capacity of a fiber-optic link
(serial rate * wavelengths) increases at a far greater rate, as each of the serial bit rate per
wavelength, and wavelength count, have been improving at a rate more or less proportional to
processor performance.

While network-embedded processing is attractive for a variety of reasons (e.g., latency,
multiplexing, and resource management), applications other than security applications (such as
the implementation of firewall functionality and intrusion detection) have been slow to emerge.
Nonetheless, these security applications are important today and any design for future systems
must take these user needs into account. We used, as a test case, the design of an intrusion
detection system that is suitable for attachment to a wavelength-division multiplexed optical
system.

 14

ABIDE

The Advanced Broadband Intrusion Detection Engine, ABIDE, is an architectural approach to
the scalable intrusion detection system challenge. ABIDE structures a set of processors as a tree,
in the style of the Columbia Dado and BBN Butterfly parallel computers. ABIDE’s processors
are heterogeneous: i.e., leaves are implemented by network processors, such as Intel’s IXP1200,
which perform initial selection and filtering of data from attached networks; and the inner nodes
of the tree are implemented with general purpose processors. Many styles of specialized
interconnection network are possible, but, as an initial selection, the gigabit Ethernet presents an
excellent design point, with substantial throughput, low latency, and a large base of existing
software, such as packet filtering libraries.

While ABIDE has not been evaluated in the context of an implementation, the major tradeoffs
that should be investigated in such an implementation would be the throughput versus filtering
rule and filter structure for data fusion versus topological structure of ABIDE. A final important
architectural question is the software structure inside the network processors, a question that
requires asymmetric multiprocessing (where both the processors and the tasks they execute are
different, as is the case with the network processor leaf machines in ABIDE). We investigated
this software structure question by construction of an operating system for network appliances,
called Piglet.

PIGLET

S. J. Muir’s doctoral thesis discussed the design and implementation of Piglet, an operating
system for network appliances. Piglet uses the basic architectural idea of using one logical pool
of processors to do network I/O, and the other to perform general-purpose computation. A non-
blocking synchronization method, polling, is used to control interactions among elements of the
processor pools. Piglet was demonstrated on dual-processor Pentium machines, using Linux as
the operating system for the general -purpose nodes and Piglet to carry out network I/O tasks.
When Piglet was used for network appliance services such as web service (using the Rice
“Flash” web server), it offered a considerable performance advantage over the same hardware
using Linux in asymmetric multiprocessing style. What Piglet teaches us is that a software
architecture for network appliances is facilitated with specialization. The Intel IXP1200 is
composed of micro-engines for per-packet processing and a general-purpose processor for
control and management functions. The Piglet system is extremely well suited to managing the
micro-engines, and efficiently communicating between them and the general-purpose computing
engine. This suggests that ABIDE is feasible and can, in fact, be programmed in such a manner
as to provide intrusion detection at even the highest throughput rates.

Piglet: An Operating System for Network Appliances
Steve J. Muir, University of Pennsylvania [34]

Abstract:
Network appliances, such as web servers and routers, present operating systems with very
different workloads than general-purpose applications. In particular, the predominant component
of such workloads is data transfer operations, not computation. By designing a domain-specific

 15

operating system, it is possible to take advantage of such properties to simplify the system
structure and increase performance.

I have used this approach to design a new operating system, “Piglet”. Piglet is based on a new
kernel-architecture: Active Kernel. An Active Kernel OS dedicates a subset of the CPUs in a
multiprocessor system to running the kernel continuously; and uses polling as the fundamental
communication mechanism for interacting with both applications and devices.

Piglet has been implemented as a hybrid Piglet/Linux system, using Piglet to provide the
network subsystem but Linux for other OS services. This prototype has been used to evaluate
Piglet using a variety of benchmarks, both micro- and application-level. These results show that
the Active Kernel architecture performs significantly better, in both latency and throughput, than
a conventional operating system (Linux).

Summary

We have used network embedded processing as a design paradigm for building an advanced
future network. We tested the idea by building a scalable intrusion detection system based on
using demultiplexed WDM channels coupled to a parallel computer. Further, we have shown
how system software for this architecture could be structured to deliver high performance.

c.4 IP over WDM (Mohamed Ali, et. al.)

Background

The evolving next generation Internet transport infrastructure is moving towards a model of
high-speed routers interconnected by intelligent, reconfigurable optical core networks that will
directly provide a global transport infrastructure for legacy and new IP services. In this model,
clients (e.g., internet protocol/multiprotocol label switching routers, IP/MPLS) are attached to an
optical core network, and connected to their peers over dynamically switched optical paths
(lightpaths) spanning potentially multiple optical cross-connects, OXCs. The optical core
network consists of multiple optical cross-connects interconnected by optical links in a general
mesh topology. This transition is driven by the deployment of high-speed IP routers and
ATM/MPLS switches. Specifically, these data-centric network elements, NEs, provide the
essential bandwidth management functions, including multiplexing up to OC-12, OC-48, OC-
192, GbE, and 10GbE rates. The use of interfaces with such rates renders intermediate SONET
multiplexing NEs as potentially obsolete. This reduction in network overlays, and the associated
elimination of SONET multiplexing and stand-alone Nes, is also accompanied by removing
SONET-layer bandwidth management and replacing it with management at higher (IP, ATM) or
lower wavelength division multiplexing, WDM, layers. In this scenario, the function of
multiplexing traffic onto wavelengths may be passed on to the IP/MPLS routers.

A critical issue for realizing such intelligent optical networks is how to provide the desired
features of rapid provisioning/restoration and automated capabilities between the optical layer
and the client layers. It is widely accepted that the best way to achieve this is to adapt the IP
topology self-discovery and routing capabilities to the optical network environment. Current
research focuses on the use of distributed management schemes such as multi-protocol label

 16

switching, MPLS, to provide the control plane necessary to ensure automated provisioning and
maintaining connections and managing network resources. In this type of application the label is
the wavelength of the incoming signal; hence, the term multi-protocol lambda switching, MPλS,
is more commonly used.

Industry organizations like the OIF and IETF are rushing to extend MPLS-framework
(Generalized-MPLS) to support not only devices that perform packet switching, but also those
that perform switching in time, wavelength, and space. What remains a major open issue is how
the control plane for the optical domain should interact with the IP (or other client) control
planes. In other words, how IP/MPLS routers must interact with optical core networks to
achieve end-to-end connectivity. There are three basic types of control plane options (three
interconnection models) being considered to interface the IP domain to the optical domain: 1) the
overlay model in which IP and optical domains have separate control planes and they do not
share routing information; 2) the augmented model in which IP and optical domains have
separate control planes, but they share routing information and each becomes directly involved in
the others’ routing scheme; and 3) the peer model in which there is one control plane that runs
both the IP and optical domains.

This work has focused on developing and implementing comprehensive, unified constraint-based
routing and signaling models and algorithms within the generalized MPLS framework, GMPLS,
to provision a full range of bandwidth entities, e.g., packet flows, “sub-wavelength” circuits
(low-rate traffic streams), and full wavelengths. Specifically, the implications of implementing
the proposed algorithms for each of the three emerging interconnection models (the overly,
augmented, and peer models), as to which one may best fit a given set of traffic characteristics or
a given application, is a key issue that has been addressed here.

Results

We have been addressing the important issue of how both lightpaths (full wavelengths) and low-
rate traffic streams (sub-lambda) can be provisioned automatically. Dynamic provisioning will
enable the rapid provisioning of new connections. Activation times will drop to minutes.
Lambda-based traffic segregation will enable the support of multiple qualities of service.
Automated provisioning systems will gain direct access to WDM resources, and real-time
dynamic lightpath provisioning will become feasible for accommodating vary traffic
requirements and for recovery from losses of network assets.

Provisioning of connections requires algorithms for route (path) selection, and signaling
mechanisms to request and establish connectivity within the network along a chosen route (path).
Specifically, this work has addressed the implementation issues of both the path selection and
signaling components of the traffic-engineering problem in such a network. In this work,
provisioning of a connection request implies that a flow of data/an optical channel is successfully
routed if both an active path (working) and another alternate link/node-disjoint path (backup) are
set up at the same time.

During the first phase of this work, we addressed the implementation issues of the path selection
component (first component) of the traffic-engineering problem in hybrid IP-centric DWDM-

 17

based optical networks. Constraint-based optical path computation, is a special case of the
routing and wavelength assignment, RWA, algorithm. We have presented and compared the
performance of several different constraint-based routing and wavelength assignment, RWA,
algorithms for dynamic provisioning of the optical channels. These RWA schemes are then used
to compute end-to-end dedicated and shared backup paths to protect against single link/node
failures. These schemes are based on fully distributed models, in which all optical nodes
maintain a synchronized, and identical, topology and link state information base (traffic-
engineering database, TED).

Specifically, unlike the conventional static RWA scheme used in most algorithms, which is often
decoupled into the routing sub-problem and wavelength assignment sub-problem, the proposed
algorithms integrate both the routing and wavelength assignment sub-problems into a single
dynamic constraint-based routing problem. Thus, the emphasis here is on the adaptive routing
problem, rather than focusing on the wavelength-assignment problem. It has been shown that the
routing scheme has much more of an impact on the overall network performance than the
wavelength-assignment scheme. Under this scenario, the overlay model is shown to be of interest
in long-haul networks... where the traffic is characterized by large, homogeneous data flows and
where the network is required to provide dynamic services at the full wavelength capacity (from
OC-48 to OC-192 and on to OC-768 in the future).

In typical metro network scenarios, the traffic is dynamic and heterogeneous where the networks
are required to provide dynamic services to the user at a rate that is much lower than the full
wavelength capacity. These sub-rate streams are very common and can comprise smaller time
domain multiplexing, TDM, channels (e.g., SONET/SDH 155 Mb/s OC-3 or 622 Mb/s OC-12),
or a variety of storage area network, SAN, protocol interfaces (e.g., 200 Mb/s Escon, 100/1000
Mb/s Ethernet, 1.0 Gb/s Fiber Channel, etc), or even arbitrary packet flows. In addition, in
networks of practical size, the number of source-destination traffic connections is still an order of
magnitude higher than the number of available wavelengths. In order to achieve maximum
efficiency, one would need to bundle these low-rate traffic streams efficiently onto wavelengths
so the number of wavelengths that have to be processed at each router is minimized. The main
objective is to reduce the number of IP ports needed on the routers (one per wavelength
added/dropped at the router) as well as to reduce both the total switching capacity of the routers
and the number of wavelengths required to achieve full connectivity.

To address this issue, we have extended the dynamic provisioning schemes developed so far
(where the bandwidth of a connection request is assumed to be a full wavelength) to allow the
provisioning of “sub-lambda” connection flow requests. In this case, our simulation results have
demonstrated that low-rate traffic streams may best be dynamically provisioned at the IP/MPLS
layer. To do so, one needs to design a survivable logical topology on top of the underlying
physical connectivity that connects IP routers.

This is achieved as follows:

First, several low-rate data flows are statistically multiplexed (groomed) on to one wavelength at
an IP/LSR router. Then, “conventional” dynamic lightpath provisioning schemes at the physical
WDM layer, where the bandwidth of a connection request is assumed to be a full wavelength

 18

capacity (overlay model), are extended to allow the provisioning of “sub-lambda” connection
flow requests at the IP/MPLS layer. Specifically, we have developed a novel integrated
protection scheme to dynamically allocate restorable-bandwidth guaranteed paths for designing
IP/MPLS over WDM networks that can protect against single optical link/node failures. In this
approach, the IP network routing, topology distribution, and signaling protocols are assumed to
be independent of the corresponding protocols in the optical domain, but relevant routing
information must be shared (augmented model). The direction for information flow is from the
optical layer to the IP layer. This will allow the IP layer to make routing decisions and request
connections (whenever needed) from the optical layer.

We have also developed several generalized multiprotocol label switching GMPLS-based
routing algorithms that allow advanced quality of service, QoS, routing frameworks to be
leveraged for sub-wavelength tributary routing algorithms, in addition to regular packet and
lightpath routing and wavelength assignment schemes. Specifically, we have developed two
different QoS-based routing algorithms to dynamically route low-rate traffic streams in future
internet protocol/label switching router, IP-centric optical networks. One algorithm attempts to
first route connection requests on the logical topology interconnecting the Internet Protocol/label
switching router, IP/LSR, routers; and then, if blocked, on the underlying WDM physical
topology by setting up a lightpath, if possible. The second algorithm attempts to first route
connection requests on the physical topology, then, if blocked, on the logical topology. This
approach increases the connectivity of the virtual topology. The performance of each algorithm
is evaluated for three different QoS-based constraint-based selection schemes, namely,
conventional shortest path selection scheme, least loaded selection scheme, and most loaded
selection scheme.

In the second phase of our work, we worked on implementing solutions for addressing the
second component of the traffic-engineering problem: the signaling component that can reserve
resources and establish path state in the network nodes selected by the route calculation process.
Specifically, we have developed four different distributed signaling protocols for fast automatic
setup and tear-down of paths across the emerging interconnection models for IP-over optical
networks. The first scheme is a flooding-based routing, FBR, algorithm with backward
reservation while the second scheme is based on an adaptive routing algorithm called Multi-Path
Routing, MPR, where k paths are probed simultaneously. Two path selection schemes are
considered for the MPR approach: a first come first serve, FCFS, path selection scheme and a
least-congested path, LCP, selection scheme. Our objective in developing these protocols is
twofold: first, to avoid the implementation complexities associated with GMPLS-based
constraint-based routing using label distribution protocol, CD-LDP, and resource reservation
protocol – traffic engineering, RSVP-TE, signaling protocols; and second, to adapt the
performance optimization algorithm to the requirements of different user applications by having
the flexibility to vary the relative weight assigned to each of three performance metrics [call
acceptance rate,CAR, call set-up time, CST, and routing distance, RD].

The main characteristic of the first two signaling schemes are: 1) the destination node makes,
adaptively, both routing and wavelength selection decisions; 2) no global state information need
be exchanged among network nodes for either scheme; 3) both schemes attempt to combine the
benefits of both the conventional preferred neighbor (poor CST) and forward-based flooding

 19

(poor CAR) approaches in a way to improve all the three performance metrics simultaneously; 4)
both schemes are able to achieve a lower CST and RD compared to that of CR-LDP, RSVP-TE,
and the preferred neighbor approach, due to their non-backtracking nature, since all paths are
probed simultaneously; and 5) both schemes use backward-based reservation signaling to
alleviate the excessive reservation of resources. This leads to a higher “call” acceptance rate
(CAR).

The third and fourth protocols are GMPLS-based distributed control and management protocols.
The third protocol is a global information-based link state approach that consists of both an
integrated RWA algorithm and a signaling algorithm. Two triggering mechanisms for the LSA
update procedures are considered; one is period-based and the other is a threshold-based update.
The fourth protocol is a local-information-based fixed alternate link routing approach where the
signaling protocol is closely integrated with the RWA protocols. No update messages are
required in this approach.

Lessons learned

• Reducing network overlays and eliminating SONET multiplexing and associated stand-alone

NEs, by removing SONET-layer bandwidth management and replacing it with management
at higher (IP, ATM) or lower (WDM) layers, is a critical component for realizing the Next-
Generation Internet.

• A critical issue for realizing intelligent optical networks is how to provide the desired
features of rapid provisioning/restoration and automated capabilities between the optical
layer and the client layers. We are strongly convinced that the best way to achieve this is to
adapt the IP topology self-discovery and routing capabilities to the optical network
environment. This implies that there should be an IP-based control plane running the optical
layer.

• Combining Optical Cross-connects, OXCs, with IP/MPLS routers is more economical than
using a stand-alone router under most practical scenarios, reflecting volume of through and
terminating traffic, statistical gains, and OXCs and router cost.

• The Overlay model is attractive in long-haul networks where the traffic is characterized by
large, homogeneous data flows and where the network is required to provide dynamic
services at the full wavelength capacity (from OC-48 to OC-192 and on to OC-768 in the
future).

• The Augmented model is attractive in typical metro network scenarios where the traffic is
dynamic and heterogeneous and where the networks are required to provide dynamic services
to the user at a rate that is much lower than the full wavelength capacity. Under this scenario,
low-rate traffic streams may best be dynamically provisioned at the IP/MPLS layer. To do so,
one needs, to design a survivable logical topology on top of the underlying physical
connectivity that connects IP routers. This is achieved as follows. First, several low-rate data
flows are statistically multiplexed (groomed) onto one wavelength at the IP/LSR router.
Then, conventional dynamic lightpath provisioning schemes at the physical WDM layer,
where the bandwidth of a connection request is assumed to be a full wavelength capacity
(overlay model), should be extended to allow the provisioning of “sub-lambda” connection
flow requests at the IP/MPLS layer (Augmented model).

 20

• Under this approach, the IP network routing, topology distribution, and signaling protocols
are assumed to be independent of the corresponding protocols in the optical domain, but
relevant routing information must be shared (augmented model). The direction for
information flow is from the optical layer to the IP layer; this would allow the IP layer to
make routing decisions and request connections (whenever needed) form the optical layer.

• Although this scheme is less complicated than in the peer, it still has the problem of sharing
information across network boundaries, which will probably not be agreed to over public
interfaces. However, we believe that there are a wide range of alternatives of what
information to share and how these schemes would work.

• Most early work on traffic grooming was focused on SONET rings, where traffic is often
static and known in advance. This is appropriate because today’s backbone transport
infrastructures are organized in rings. However, as networks evolve to become more IP-
centric, grooming for IP traffic will become an important area for future work. In the IP
environment, however, traffic is typically neither static nor known in advance. Furthermore,
as network architectures transition from ring-based to mesh-based, grooming in mesh-based
networks will become an important extension to current ring-based grooming algorithms.

• We envision that the full benefits of the optical Internet can be realized only when the
capabilities offered by optical technology, available today primarily at the core of the
network, spread toward the edges, extending the optical reach as close as possible to the end-
user.

• Although most of the discussion within the IETF and OIF continues to focus on the
distributed model, we point out to the potential role and advantages of having at least some
centralized control capabilities to handle the complexity inherent in the optical layer, and
argue that the most favorable long-term approach might include a combination of centralized
and distributed control.

• It is important to point out that future networks will probably need a combination of these
approaches - in other words, it’s not an either-or situation. We see distributed techniques
handling many basic lightpath set-up and tear-down, but centralized control handling
complex restoration events, network policy enforcement, network optimization tasks and
inter-domain routing that may be beyond the capabilities of distributed control software and
protocols.

• There is, we believe, no single solution to the challenges associated with Internet scaling
bottlenecks, but rather a combination of solutions is required to address the many different
areas where the bottlenecks occur. Faster network equipment, larger pipes, smarter software,
and localized content all are important pieces in a larger puzzle.

c.5 Network Traffic Modeling (Stewart Personick, et. al.)

Background

Recent studies of high-quality, high-resolution network traffic measurements have revealed that
modern packet traffic appears to be both self-similar (or long-range dependent) and non-
Gaussian distributed. In order to realize desirable properties in communication networks related
to quality-of-service, QoS, it is crucial, in traffic engineering, to develop efficient traffic models
that are capable of yielding acceptably accurate performance predictions in a reasonable amount

 21

of computational time. We have shown evidence that although heterogeneous network traffic has
complicated short-range and long-range temporal dependencies, for certain models of self-
similar network traffic, the corresponding wavelet coefficients (using wavelets as basis vectors to
simulate the traffic) are no longer long-range dependent. Indeed, the multi-scale property of
wavelets may make wavelet representations a natural and powerful analysis/synthesis tool for
network traffic modeling. Therefore, although still remaining as a challenging problem,
modeling dynamic network traffic in the wavelet domain may be significantly easier than in the
time domain. We have initiated an activity to develop stochastic models for self-similar traffic
based on wavelet analysis/synthesis techniques.

Progress

We studied the characteristics of several, alternative wavelet models of packet traffic. The
models we tried to use all have revealed significant shortcomings, including shortcomings in
their ability to capture the second order (spectral or correlation) properties of measured traffic.
We considered alternative wavelet models and we tried to define measures of the suitability of
various traffic models in real applications. Suitability is defined here as the ability of the model
to predict the performance of the network with sufficient accuracy under various assumptions
regarding the importance of various network behavioral characteristics.

We have produced some strategies for designing networks that attempt to anticipate and
automatically accommodate (e.g., by provisioning buffer capacity and reconfiguring the network
in near real time) statistical traffic fluctuations within certain time scales (e.g., <10 minutes),
while employing ad-hoc techniques (e.g., intervention by traffic managers to choke off the
sources of emerging overloads) to deal with fluctuations on longer time scales. These methods
are based on the premise (to be verified) that long term fluctuations, that cannot be efficiently
managed by provisioning and traffic rerouting, will provide enough advance warning to allow
ad-hoc approaches to be effectively employed.

c.6 Wavelength Agility and Optical Networks (Bahram Nabet, Janet Jackel,
et. al.).

The objective of this research is to determine the viability of designing and implementing
networks that employ a layered hierarchy of: packet switching, flow switching, add-drop
multiplexing, wavelength routing, routing of groups of wavelengths, and switching of entire
optical fibers, with the objective of reducing the cost and complexity of network traffic and
quality-of-service management.

Subsequent to the tragic events of 9/11, it became apparent that reduced complexity of
network management would be a key factor in the ability to restore critical services in
heavily damaged networks. Thus recoverability and robustness become major, driving
forces in the process of network design and optimization.

 22

Wavelength-selective optical detector (B. Nabet, et. al)

We previously reported fabrication of a novel photodetector that offers wavelength selectivity
needed in optical networks, particularly in gigabit Ethernet. This tuned detector, which is based
on vertical cavity surface emitting laser, VCSEL, structure, rejects out-of-band signals, and
noise, and is particularly useful in broadcast-and-select switches. Figure 4 shows the device
response time. In this reporting period we completed high-speed time domain measurements of
the device. The source was a femto-second Ti:Saphire laser and the data was collected with a
sampling scope of 50 GHz bandwidth. Time response is shown in figure 4, indicating fall and
rise times of about 7 picoseconds and a full width half maximum, FWHM, of about 8
picoseconds. The data indicates that our device is limited by the measurement system (probe tips,
bias tee, scope) and has a potential bandwidth that may exceed 40 GHz. We have designed a new
mask set that will allow us to incorporate an on-chip transmission line and perform higher
resolution electro-optic sampling measurements. Telcordia Applied Research has expressed
interest in characterizing and using these devices for their applications.

0 10 20 30 40 50 60
0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

5V

V
ol

ta
ge

 (V
)

Time (ps)

Figure 4: Time response to femtosecond laser with wavelength of 850 nm

Wavelength agility in optical network elements (Janet Jackel, et. al.)

Background
Networks with multiple levels of granularity have been proposed by a number of groups1
recently as a means of coping with the large numbers of wavelengths projected to be needed to
realize an optical network with ultra-high capacity. In publications (Ref. 1, and also IPO
Working Group Internet Draft on Optical Multi-Granularity, multi-granularity has been

1 For example, Noirie, et al, “Impact of intermediate traffic grouping on the dimensioning of multi-granularity
optical networks” OFC2001 paper TuG3, Noirie, et. Al., “Multigranularity Optical Cross-Connect,” ECOC2000
paper 9.2.4

 23

described as a means of reducing the size of optical switching matrices, thus reducing network
cost.

http://search.ietf.org/internet-drafts/draft-dotaro-ipo-multigranularity-00.txt)

Published discussions of multi-granularity, however, have not looked in depth into the physical
implementation viability of the switches that are proposed. There appears to be an assumption
that separating a set of wavelengths into bands, and combining bands of wavelengths into an
aggregate, is straightforward and will introduce no signal impairments.

There are also unspoken implications:

1. That the number of ports in a switch for N fibers carrying M wavelengths is (NxM) x (NxM)

if wavelengths are switched or that for N fibers carrying B bands is (NxB) x (NxB).

In fact the first is true only if wavelength conversion is provided for all inputs on any
wavelength. Without wavelength conversion M independent NxN switches are needed. For
band switches/crossconnects, there is no wavelength conversion2 and the switch/crossconnect
needed for N fibers with B bands would consist of B independent NxN switches. In either
case, the larger number of smaller switches could be realized using the larger switch, if such
is available and economically preferable, but at this time there is an advantage to being able
to use smaller, more readily available switches.

2. If only a specific and limited set of wavelengths can be switched at a node, the value of
multi-granularity can be defined. If only a specific and limited set of bands can be broken
into wavelengths, multi-granularity will be economically favored (assuming that performance
is not affected); but if we demand that any band be able to be broken into wavelengths (more
flexibility), then even if only a single band at a time is able to be broken down, filters will
need to be provided for all, eliminating any economic advantage.

There may, however, be performance advantages to wave banding, even where there are no cost
advantages. If a band is not broken down into individual wavelengths except when needed,
those wavelengths do not incur the same performance costs (for example passband narrowing) in
the nodes where they pass through intact.

3. It is assumed in publications that a band approach will introduce no impairments greater than

those already in a network with each wavelength switched at each node.

This is not guaranteed. It depends strongly on the choice of wavelength
multiplexing/demultiplexing technologies.

Results

2 Band wavelength conversion is not impossible, but it is complicated, involving nonlinear optical interactions, and
has not been demonstrated with useful efficiency. Furthermore, band conversion lacks flexibility in wavelength
assignment, unless multiple stages are used. Multistage band conversion is more complicated and likely much more
costly than demultiplexing the band and converting each wavelength separately.

 24

Based on the points above, we proceeded to demonstrate a band add/drop and a band cross-
connect, using components available commercially at this time. Bands can be implemented
either by combining an existing set of wavelengths into coarser granularity or by subdividing an
existing set of wavelength channels to provide finer granularity. We pursued the latter approach
for two main reasons:

1. Multi-granularity has it greatest advantage when the number of channels becomes large.

This will occur only for finer channel spacings than are currently implemented in most
available WDM networks. We are now working with a legacy tested (MONET NJ testbed),
which has 8 wavelengths on 200 GHz centers. Grouping these wavelengths into bands can
have an advantage to the extent that it reduces the number of switch fabrics needed, but the
advantage is small compared with that gained in a network with larger number of
wavelengths.

2. Networks with a small number of widely spaced wavelengths use the available bandwidth
inefficiently unless each wavelength channel carries an extremely high bit rate. Subdividing
the bandwidth via multi-granularity allows more efficient use of the bandwidth.

We therefore concentrated on defining an architecture for a band add/drop and a band cross-
connect, both of which assume no wavelength conversion, and which can therefore use an optical
cross-connect of small size for each wavelength or band.

Candidate architectures:

Several candidate architectures were identified. Each of the choices shown has certain
advantages and disadvantages:

Broadband fiber Bragg gratings

A wave band add/drop based on broadband fiber Bragg gratings (Figure 6a) is simple to
construct. However, we have found several performance problems associated with the gratings.

Bragg fiber grating filters to define narrow wavelength channels within the bands

We ordered a set of these with 25 GHz channel spacing. The Bragg gratings are used in
conjunction with optical circulators, which were also ordered. Because of the cost of these
components, we utilized a minimal set to test the concept and to characterize optical
impairments. (We used funds from another source to purchase an additional set of narrow Bragg
filters and circulators, and thus were able to build a more realistic network.) We also purchased
custom built, spectrally wide Bragg gratings to define bands.

From the process of working with the supplier of our wide band Bragg gratings, we find that:

a) It is difficult to produce a fiber Bragg grating with a very wide passband and an abrupt
transition from transmission to reflection.

b) There are tradeoffs between the width of the reflection band, the abruptness of transition,
and unwanted reflections in the transmission region.

 25

c) For these reasons, the gratings are likely to be more expensive than we (or the supplier)
had anticipated.

d) Even with non-standard fiber, it will be hard to produce gratings with passbands greater
than about 150 GHz.

On the other hand, the narrow band (25 GHz spacing) fiber Bragg gratings are probably adequate
for wavelength selection after a band has been separated out. Those we have purchased have
approximately 10 GHz of passband.

We have also considered the use of interference filters for different wavelength granularities to
be used in the same architecture. We now have filters appropriate for bands with 200 GHz
spacing. We intend to use these along with the interleavers to define bands. However, these
have narrower than desired spectral passbands, and we are also looking at the use of either wider
interference filters (no longer readily available since commercial emphasis has moved to
narrower wavelength spacing) or custom designed wide band fiber Bragg filters (see below).

Based on measurements of passbands, we do not believe that interference filters will meet the
needs of either waveband add/drops or narrow wavelength separation. Wide band interference
filters that might be suitable for waveband add/drop functions do not have sufficiently sharp
transitions).

Band 1
Add/drop

Band 2
Add/drop

Band N
Add/drop

To/from
wavelength
add/drop

To/from
wavelength
add/drop

To/from
wavelength
add/drop

Band 1
Add/drop

Band 2
Add/drop

Band N
Add/drop

To/from
wavelength
add/drop

To/from
wavelength
add/drop

To/from
wavelength
add/drop

Figure 5a: A waveband add/drop that is constructed from wide passband Bragg gratings

 26

Figure 5b: Measured transmission and reflection for a fiber Bragg grating with a

performance appropriate for a waveband add/drop

Assessment of the architecture of Figure 1:

This add/drop architecture can be constructed from components now available, but it has a
number of performance problems:

• Even with ideal filter performance, impairments arise because wavelength selection is

passive and therefore all wavebands must be dropped and added even when the entire band is to
pass through the network element.

• As the number of wavebands increases, the loss through this type of network element will

increase, since all light must pass through a larger number of waveband add/drops.

• Waveband width is fixed; it is not possible to reconfigure with waveband itself.

For these reasons, we do not believe that this architecture is suitable for any but the simplest
multi-granularity network elements.

Dynamic band blocker

An architecture based on a dynamic band blocker (Figure 6) seems perverse at first, but has a
number of advantages. In this add/drop, the incoming optical power is split into two paths. A
spectral band blocker is placed in the through path; the drop path goes to a band demultiplexer,
which can be built in any of a number of ways.
Clearly this guarantees at least 6 dB of loss in the add/drop for the through channels, plus the
loss in the band blocker. In our lab the band blocker is a liquid crystal based switch3 with broad
(≥1.2 nm) and flat passbands, and spectral efficiency greater than 80%.

3 J. S. Patel and Y. Silberberg, “Liquid crystal and grating based multiple-wavelength cross-connect switch”,
Photonics Technology Letters, vol. 7, No. 5, p. 514-516, 1995.

 27

3 dB
splitter

3 dB
splitter

Band blocker
(dynamic)

To band or wavelength
Add/drop

From band or wavelength
Add/drop

3 dB
splitter

3 dB
splitter

Band blocker
(dynamic)

To band or wavelength
Add/drop

From band or wavelength
Add/drop

Figure 6: Waveband add/drop based on a dynamic band blocker

Figure 7 is a “cartoon” depiction of the switch showing its basic functions: gratings disperse the
incoming spectrum, an array of liquid-crystal cells rotate polarizations of selected band, and
polarization optics converts polarization rotation into displacement. The same structure can be
used as either a dynamic band blocker or as a band add/drop, and can also function as a
waveband interleaver.

The band blocker we use is based on an old Telcordia design, originally for the DARPA-funded,
multi wavelength optical networking, MONET project, and is therefore designed for 8
wavelengths with 200 GHz spacing. A similar component is now made by Corning and sold as a
“Pure Path” switch and is incorporated in some Marconi optical network elements.

This architecture has several advantages:

Only the wave bands that are to be dropped will experience spectral narrowing. The “drop and
continue” function is trivial to implement, since all wavelengths pass into the “drop” port. The
beam blocker can also act as a per-band power leveler, if monitoring is provided. Because
wavebands are processed in parallel rather than in series, loss in the beam blocker is not strongly
dependent on the number of bands.

 28

Figure 7: Schematic picture of liquid crystal switch used as dynamic beam blocker or band
add/drop. Input and output spectra are shown.

The liquid crystal switch has intrinsic losses due to the complicated optical path. Another way to
realize the same function is to replace the liquid crystal cells with a one- dimensional array of
MEMS tiltable mirrors. The eliminates the multiple polarization selective optical components
needed in the liquid crystal embodiment of the blocker, and should therefore reduce loss.

Input Spectrum Output Spectra

In
te

ns
ity

5
dB

 /
di

v.
)

In
te

ns
ity

(1
0

dB
 /

di
v.

)

Liquid Crystal
Cell Array

Control
Contacts

Lens

Grating
Grating

Lens

Deflection
Optics

• Wide, Flat Passbands with
 High Spectral Efficiency
• Low Crosstalk (-35 dB)
• Simple, Low Voltage
 (~5V) Control

Birefringent
Crystal

Input Spectrum Output Spectra

In
te

ns
ity

5
dB

 /
di

v.
)

In
te

ns
ity

(1
0

dB
 /

di
v.

)

Liquid Crystal
Cell Array

Control
Contacts

Lens

Grating
Grating

Lens

Deflection
Optics

• Wide, Flat Passbands with
 High Spectral Efficiency
• Low Crosstalk (-35 dB)
• Simple, Low Voltage
 (~5V) Control

Birefringent
Crystal

 29

Dynamic band selector

A network element architecture based on dynamic band selector uses a the liquid crystal switch
or a similar component as a band add/drop. The switch drops (and adds) selected bands and all
others pass through unaffected. The intrinsic through loss of this architecture is six dB less that
that of the previous one, since the splitter and combiner are not used. This architecture has the
same advantages at the previous, except that the neither the drop and continue function nor
power leveling are possible without additional components.

Figure 8: Band add/drop based on a the liquid crystal switch

Other technologies

Wavelength conversion:

At the wavelength granularity level, we have completed a comparative study of wavelength
conversion techniques (see attached table) showing that our design is competitive in performance
while being very cost effective. Components including agile tunable lasers and modulators have
been ordered, with delivery date of mid February 2002. Test equipment have been assembled to
measure performance characteristics, particularly bit rate transparency limits. During this phase
we procured the most viable commercially available component that monolithically integrated
the EAM (electro absorption modulator).

Liquid crystal switch
(dynamic)

To band or wavelength
Add/drop

From band or wavelength
Add/drop

Liquid crystal switch
(dynamic)

To band or wavelength
Add/drop

From band or wavelength
Add/drop

 30

Table 1: Summary of Wavelength Conversion Alternatives

OEO FWM - Passive FWM - Active

Cross-
Gain/Phase
Modulation -
SOA

Diff Freq in
Semi-conductor
WG EAM

(Saturable
Absorber)

Transparency Limited Fully Fully Limited Fully Limited Limited

Conversion effciency 10-20dB 1.2% (-20dB) -7dB
8dB GC-SOA -

2dB CP-SOA
-4dB theory, -

17dB meas. -20dB

Conversion Bandwidth >100nm <20nm ~40nm >90nm >100nm >100nm

Signal Quality
Noise Figure ~8dB SNR<20 [Yoo] ~8dB GC same as input ? ~20dB

Input Dynamic Range ~20dB, f(Rx) >10dB >10dB [Yoo]
3dB range for
CP-SOA

Extinction Ratio 10-20dB, f(Rx) same as input same as input
<8dB GC
>12 CP same as input ~12dB >20dB

Dispersion problem no no
yes GC-SOA No

CP-SOA no no
yes DM-DBR

?others
Distortion
Phase preserved? No Yes Yes Yes No No

Power Consumption 2W

Bit rate limit/RF BW limit ~10GBps

Tuning Speed
Depends on

tunable filter

Pump is short
wavelength
(~1/2)

Polarization Dependance No Yes Yes
design active

region No

Advantages * commercially
available *Transparent,

Disadvantages
*limited
transparency

*SNR
degradation
*Narrow BW

 31

Some of the issues we have investigated include, (posed as questions/answers),:

1. How can individual wavelengths within a band be guaranteed to maintain acceptable
optical power levels and optical signal to noise ratios when the entire band, rather than
individual wavelengths, is being controlled?

We have looked at how passband shape affects this. Figure 9 shows the spectrum of a four-
wavelength source with 25 GHz spacing compared with the passband of one band of the liquid
crystal switch and that of a wide interference filter. Clearly the flatter passband will have less of
an effect on the relative powers in the four wavelengths.

-60

-50

-40

-30

-20

-10

0

1549.5 1550.0 1550.5 1551.0 1551.5 1552.0 1552.5

Signal
WhiteNoise
PADM_Profile
LCXC_Profile

Figure 9: Comparing the passbands of two types of band selectors with the spectrum of a

four- wavelength source used to fill the band.

Figure 10: Power in each of two orthogonal polarizations for wavelengths within a band

and in different bands, after 76 km of fiber in a laboratory, where all wavelengths
entered the fiber in the same polarization.

 32

2. What effect will polarization evolution in the network have on the above? (Changing
polarization, combined with polarization dependent loss or gain, can change relative
powers within the band.)

We have made measurements of polarization evolution within and between bands, in the lab and
over fiber only, i.e., with no network elements besides the first, which multiplexes the
wavelengths onto the fiber. The consequences of polarization evolution within a band depend on
polarization dependence of other components. Organizing the spectrum into bands and
controlling optical power only at the granularity level of the band will enforce more stringent
demands on the polarization independence of components.

3. How should bands be organized (contiguous wavelengths, interleaved wavelengths) to
take advantage of the capabilities of the components? How will optical impairments
differ for different choices?

Example: bands generated by interleavers are easier to break into individual wavelengths;
however, widely spaced wavelengths would require flatter EDFA gain spectra. In addition,
polarization evolution measurements (above) argue strongly against interleaved wavelengths. For
the above reasons we believe contiguous bands are best.

4. How can monitoring be implemented in such a network?

Monitoring is understood to be a problem in any transparent optical network. It will be more
difficult in one with multiple levels of granularity. Can we dispense with individual channel
monitoring except at the edges if the network is well engineered? Monitoring remains an open
question.

5. How does wavebanding affect network robustness?

In some cases, failure of a single component can affect larger amounts of bandwidth. On the
other hand, multi-granularity affords opportunities for greater redundancy and flexibility in the
network. Because fewer components are involved in reconfiguration needed for restoration after
a failure, multi-granularity can make recovery from failures easier. This remains an open
question. It is critical to investigate real scenarios for response to failures and how different
switch designs affect vulnerability.

Lessons learned

1. From an ARCHITECTURAL perspective, wavebanding would appear to be an natural way

to dramatically increase the bandwidth capacity of an EXISTING transparent optical network
by simply packing a larger number wavelengths into a given optical channel band. However,
when it comes down to implementing it in practice, the transparency of a given optical
channel may not be as “transparent” as one might have expected (due to filtering &
polarization effects, for example), thereby reducing the potential number of additional
wavelengths that can actually be deployed. Therefore, during design of future optically
transparent network elements, one should assess the impacts and tradeoffs of supporting
wavelength banding, even if the network element is not intended to be used in that manner

 33

initially. Certainly we have established the need for different requirements on the network in
order to accommodate multigranularity. Polarization effects are an example. Amounts of
polarization dependent loss PDL that would be acceptable in standard WDM networks can be
unacceptable in a network with wavelength banding.

2. Different switch architectures have very different consequences for multi-granularity.

Performance: Architectures which drop bands only when those bands either to be dropped at
that node or are to have further processing (extraction of one or more wavelength) impose less
band narrowing on the through traffic, and thus create less performance impairment. This has
an effect on scalability of such networks, since the through traffic can pass through a larger
number of nodes before performance becomes unacceptable.

Scalability: Architectures in which bands are processed in parallel (the second two we have
shown, or any relying on arrayed waveguide gratings to separate bands) can more easily grow
to a larger number of bands.

Cost: The primary cost advantage multi-granularity comes from reducing number of
components. Only architectures that actually do so will reduce costs; if any wavelength can
be dropped at any node, the components needed to do so will need to be present, even if they
are seldom used. Consequently, the cost advantages of multi-granularity will require
wavelength allocation that avoids this, and there will be some loss of flexibility.

3. Network robustness: While the failure of a single switch can affect more bandwidth in a
network with multi-granularity, we believe that wavebanding will make it simpler to recover
from many failures. A true understanding of the impact of multi-granularity on robustness
requires further study.

4. Not all the components needed to build multi-granularity are available at this time. If we
intend to build such networks we will need to stimulate their development.

 34

D. Bio-informatics and Bio-complexity Applications

d.1 Distributed Neuroanatomical Database (J. “Yoni” Nissanov, et. al. and
Susan Davidson, et. al.)

The goal of this research is to use high-speed networking technology to implement a distributed
genomic-neuroanatomical database. The system will combine databases and software developed
at the Center for Bioinformatics at the University of Pennsylvania (PCBI), including databases of
genetic and physical maps, genomic sequences, transcribed sequences and gene expression data,
all linked to external biology databases and internal project data, with mouse brain atlas data and
visualization packages developed at the Computer Vision Center for Vertebrate Brain Mapping
(CVCVBM) at Drexel University. The biological/medical value of the activity lies in the ability
to correlate specific brain structures with molecular and physiological processes.

MacOStat, the atlas visualization software, was further developed during this past fiscal quarter.
Image and volume-of-interest, VOI, can now be reliably transferred across the network. A
problem that previously contributed to periodic fatal errors has been corrected. The current
version has been enhanced to support multiple simultaneous session within a single window that
supports co-navigation through multiple volumes. This will allow users to view multiple atlases,
each of a different modality. Even of greater value, this functionality will allow, with the future
expansion of Gigabit networks, simultaneous access to atlas and multiple volumes from the
Mouse Brain Library, a repository of neuroanatomical mouse data being built as part of the
Informatics Center for Mouse Neurogenetics (a National Institute of Health NIH supported
program project on which Dr. Nissanov participates).

With the current MacOStat version, VOIs resident on the client side can be overlaid on all
remote and local volumes. During the next quarter this function will be enhanced to support
projection of remotely stored VOIs onto all displayed atlases. As planned, aids for performance
monitoring have now been implemented. These report both network transfer speed as well as
3D-reslice time. The network, which as of the last progress report was operating at far below
expectations, is now running at 120Mb/sec.

With the UPenn and Drexel link working correctly and the software reliably running over the
network, we can now visualize 3D volumes in a client-server mode. A user sitting at UPenn is
able to manipulate a data volume resident on the Drexel server. In the future, interaction with
GUS, a system of combined databases, and software will rely on the K2 data integration
software; we have therefore installed the K2 data integration software on the UPenn MAC during
this quarter. Since this is the first time K2 has been installed on a MAC machine (all previous
ports were to Linux or Unix machines), some troubleshooting was necessary. The problem that
we are now addressing is the lack of support for simultaneous gigabit and Ethernet connection
under MacOS 9.X. The most attractive solution is upgrading to MacOS X that does support dual
networks. This change will require some modification in MacOStat.

We have demonstrated remote access to large, distributed bio-informatics data bases (including
remote microscopic access to archived slides of mouse-brain tissue stored on a remotely
controllable carousel slide server) using very-high-speed networking (> 100 Mbps), and we are

 35

now planning to produce a CD-ROM that captures this very impressive
presentation/demonstration in order to facilitate promulgation of our results. These
demonstrations illustrate (in compelling ways) how research on the underlying genetic origins of
brain diseases (and potential cures) can be facilitated and accelerated using very high-speed wide
area networking.

From the perspective of the end-user, visualization of fused spatial and genomic data will make
use of MacOStat, the atlas navigation software. This application was further developed during
this past fiscal quarter. The MacOStat client has been modified to operate in a passive mode; at
startup time, the client will automatically login to the atlas server, and then wait for data to be
pushed from the server, in effect reversing the usual client-server relationship. This will allow
the K2 data integration software to instruct the MacOStat server to send image data to the
MacOStat client asynchronously, allowing the results of queries to the GUS database to be
displayed graphically on the MacOStat client. In addition, the MacOStat client was modified to
operate in the MacOS X environment, which should simplify the support of dual network
connectivity.

In addition, the K2 data integration software was successfully ported from a Unix to Mac
environment, as well as drivers to the GUS database. Drivers to the MacOStat server have also
been written, and are being tested. A web interface has been designed and implemented which
displays a taxonomic tree of mouse brain terms, and automatically fires off queries to GUS about
gene expression within a selected portion of the taxonomic tree. The interface also allows the
user to ask MacOStat to display the color-coded selected regions. This provides a proof of
concept for the integration of sequence databases as well as specialized data sources and
visualization software in the Mac environment using high-speed as well as normal Internet
networks.

In 4Q2002 (calendar year) we successfully integrated the Neurocartographer software with K2
software and hypertext preprocessor, php, scripts to access the GUS databases, and display the
results in graphical format via Neurocartographer. The integrated software allows the user to
browse the GUS database, choose a sequence, and have areas where the sequence is known to be
expressed viewed as highlighted on the Neurocartographer client display. The highlighted areas
are colored based on expression data obtained from GUS. The user can then use the
Neurocartographer client to browse the full atlas. In addition, the Neurocartographer server has
been made more robust, resulting in improved up time. This work was demonstrated at the Next
Generation Internet Principal Investigator meeting on January 6, 2002 in Tyson’s Corner VA

d.2 Cellular Observatory (J. Yasha Kresh, Banu Onaral, et. al)

Unraveling the complex dynamics of cellular network behavior is the principal focus of this
study. Gaining insight into cellular organization requires the establishment of novel imaging
techniques that will enable the study of functional cellular interactivity that has been not possible
to date. Existing methods monitor singular cellular / sub-cellular events and/or produce only a
static ‘snap-shot’ of a specific moment of a dynamic process of interest. Conventional “fixed-
cell” assays are inherently deficient in elaborating the dynamic links between the inter- and
intracellular processes that define cellular homeostasis. In contrast, a simultaneous tracking of a

 36

set (e.g., three or more) of cell specific functions in each of the ‘units’ of the cellular assembly
will help unravel some of the critical links that are involved in the dynamic re/organization of
cellular network behavior.

The specific methodological approach to be implemented for identifying the cellular
organization will involve binding of fluorescent markers to specific organelles within the living
cell and recording real-time images of cellular network activity, spanning many hours of
observation. The use of multiple fluorescent markers will enable to interrelate cell function (e.g.,
cytoskeletal meshwork, and second messengers) to the functional inter-connectivity of the
cellular network, as well to its viability. The acquired images will form the basis for the time-
lapse mapping of processes and emergence of intercellular communication patterns. The
sequential frames (pattern formation) will be used as a baseline to study the role of spatio-
temporal organization of the formed cellular network in adaptation to the imposed environmental
changes (e.g. stress). The specific aims of the “Cellular Observatory” are as follows:

 Demonstrate a high speed multi-mode cellular imaging and digital microscopy
collaboratory

 Study live-cell spatio-temporal organization in real-time
 Study the role of intercellular communication and its effects on viability and “cell

culture” survival
 Develop computational models to study cellular network viability and adaptability to

imposed stress conditions.

Part I - Telemic Software Development.

A module for interfacing and controlling remotely the Firewire (IEEE-1394) camera was
completed. Importantly, the telemicroscopy ‘Server’ can capture images from the high-frame
rate (200-400 Mbps) video color camera and write it to disk in jpeg format. The images can be
captured to disk in a streaming manner (e.g. every 100 msec). There is an added feature in place,
such that only a change in image content (pixel-by-pixel comparison) necessitates the ‘Client’ to
update the viewed image. Functionality includes <Filter Wheel Control> and <Shutter on/off
Control> thereby enabling a remote user to change the emission filters and /or excitation filters at
will. One can also close the shutters to prevent light bleaching (e.g. fluorescent dye) of cell
culture under prolonged observation.

The X-Y stage movement control module is fully operational with the following features:

Incremental (0.2 micron / step) movements in the X-Y directions. i.e. NW, SW, SE, NE, E, W

Ability to move back to the set origin from any given position

Stage Calibration: This moves the stage to its limits and calibrates the stage.

Ability to move the stage to any specified X-Y co-ordinates, within the available field of
excursion. This functionality is graphically emulated on the screen that maps the area
available for stage movement and then provides cursors to mark the x-y co-ordinates. All one
has to do is to drag the cursors and the stage moves correspondingly to the specified co-
ordinates.

 37

All the stage movements can be undone by clicking the UNDO button on the client window.
The speed of the stepper motors is now controllable by the ‘Client’ -the stage can be directed
to move at maximum or minimum speeds.

The user can snap an image i.e. capture a scaled version of the image from the camera for future
reference. The focus control (Z-axis) module has been implemented. The client interface and
functionality was changed from increment-decrement buttons to a ‘slider’ that changes focus in a
more intuitive manner. This is like actually rotating the knob. The <EDIT> feature has been
incorporated into the Telemic. By invoking it, one can capture an image from the camera and
then edit it. Functions currently available are <Grayscale>, <Invert>, <Blur> and <Contrast>.
This module can be expanded to include various nonlinear filtering algorithms and users may
desire routine image processing functions as.

The automatic refresh feature has been changed to function as a “virtual” <Video Recorder>. The
pre-view window shows the images captured from the camera at a rate specified by the user. The
default rate is one frame/second. This rate and/or delay can be changed in accordance with the
‘Clients’ request. This feature is additional to manual refresh function that updates / grabs a new
image from the microscope when “called” to do so.

A panel has been added to the ‘Telemic Client’ to facilitate control of illumination intensity and
magnification (10X-100X objective) change. This module will be completed and implemented
when the requisite supporting hardware is installed.

A <Chat> function is fully operational, allowing on-line users to converse with other Telemic
subscribers. This chat feature allows the users to also have private “conversation” with pre-
selected users. One can also change nicknames during chatting as well as access the on-line help
system.

In the <Discuss Mode> users can discuss a captured image among each other. In addition, a
dynamic pointer is invoked such that it can be “surrendered ” to any one of the user in the
<Discuss Mode>. If a user moves the arrow around and repositions it then a corresponding arrow
on any of the active screens will be repositioned accordingly. <Tiling feature> allows a user to
create a montage (topographic map) of a specific region of the culture. This feature will allow
automatic control of the stage to facilitate capturing “tiles” of the area and then to piecing them
all together.

 38

Figure 11: Cellular Observatory Remote-Access Graphical User Interface

Part II—Cellular Network Dynamics

II A - Engineered Cellular Cultures:

We began the development of functional assays for observing and detecting the formation
(making and breaking) of inter-cellular (junctional) communication in engineered cardiac tissue
cultures. We are operating under the assumption that the relative increase in gap junction
assembly is indicative of the integrative “cooperative” cellular networks, i.e., why cells form
bonds or channels of communication that don’t do anything.

The motivation for this line of thinking is in part related to the observation that the “program”,
not to re-regenerate its cellular network structure, limits the recovery of a damaged heart muscle.
One approach to address this problem is to repopulate the impaired myocardium by healthy cells.
In particular, our live-cell ‘Observatory’ provides an ideal platform for studying the role that the
extracellular microenvironment plays in the “assimilation” of non-cardiac cell types such as
fibroblasts, skeletal myoblasts and adult stem (hematopoietic) cells. For example, observing the
process of stem cell-cardiomyocytes dynamic interaction (differentiation) in an ex-vivo setting
may give clues for improving their integration within the intact cardiac cellular architecture.

 39

Two new studies that will exploit the capabilities of the cellular observatory platform are
summarized below:

Myocardial Tissue Engineering and Regeneration Using Adult Stem Cells

Cardiac function is mechanistically linked to junctional cell-cell contacts that give rise to
synchronous electrical activity and coordinated mechanical contraction. In contrast, it has been
observed that the ability of tumor cells to proliferate is inversely related to its number of
intercellular junctions that they form. Dr. Peter Lelkes (School of Biomedical Engineering)
recently joined forces with us to pursue the development of stem cell technology as a source of
cardiac precursor cells in assessing and optimizing cardiac differentiation using their respective
expertise (in cellular/molecular tissue engineering, computer-aided microscopy/live-cell
observatory and computational modeling.) Dr. Sunil Rangappa (Cardiothoracic Research
Fellow) joined our group in July to work along with Dr. Hilmi Ege, (Oncology/Hematology
Visiting Fellow) on the tissue culture and genetic engineering strategies designed to promote cell
proliferation and growth.

Myocardial Tissue Engineering and Regeneration Using Electrically Conductive Polymeric
Scaffolds

In this study undertaken in collaboration with Dr. Peter Lelkes (School of Biomedical
Engineering) and Dr. Yen Wei (Chemistry), we intend to utilize the capabilities of the live-cell
microscopy system to assess the functional attributes of the ensuing “cardiac syncithium”,
growing on electrically conductive polymers.

Specifically, we will
• visualize, quantitatively analyze and model the topology of beating patterns
• assess the establishment of intercellular connectivity, using lucifer yellow as marker for cell-

cell communication
• record the electrical activities using multi-array electrode chambers.

II B - Computational Models:

The imaging utilities of the cellular observatory are aimed to monitor cellular network dynamics,
in particular, live-cell spatio-temporal organization and the role of intercellular communication
and its effects on tissue genesis, viability, adaptability and survival. Computational modeling of
cellular integration and tissue organization dynamics are critical steps in understanding the
unfolding and emergence of “organotypic” function.

It has became apparent that the computational modeling objectives of the project are compatible
with Dr. Jaydev Desai’s (Mechanical Engineering and Mechanics) interest in the dynamics and
control of robotic assemblies as summarized below. He was invited to join the biocomplexity
modeling team currently consisting of Dr. Onaral, Dr. Kresh and Mr. Can Evren Yarman, a
graduate student who joined the project in March 2001. Mr. Yarman is provided assistance Dr.
Desai’s project in order to learn the graph theoretic approach employed in the study of robotic

 40

populations. In parallel, he investigated other public domain ‘complexity’ tools amenable to
capturing key features of cellular dynamics.

The objective of the Mobile Robotic Assemblies effort is to develop novel strategies for
controlling and changing formations of mobile robotic agents using sensory information and
abstract computational models. Initially, the robots rely on vision and sonar systems for tracking
other robots, pose estimation and obstacle avoidance. The problem of maintaining the shape of
the formation is done through classical non-linear control techniques. Algorithms for
transitioning from one formation to the other are developed using graph theoretic techniques.

Figure 12: Formation of robots changing shapes

Teams of robots are modeled in formation in terms of parameters (g; r; H), where g ∈ SE(N)
represents the gross position and orientation of the lead robot in that team in N dimensions (N
equals two or three), r is a set of shape variables that describe the relative positions of the robotic
agents in the team, and H is a control graph which describes the control strategy (or behavior)
used by each robot, and the dependence of its trajectory on that of one or more of its neighbors.

Since “biocomplexity” inspired principles of self-assembly and regulation can be explored “in-
silico,” we view this modeling phase as a first step toward addressing the long-term objective of
the project directed at gleaning (reverse engineering) biological principles likely to inspire the
design of robust and adaptive communication networks as well as other potential applications of
interest to DoD. Mimicking biological organization and function are particularly intriguing since
they may have implications in engineering distributed memory systems, robotic assemblies and
communication networks which exhibit emergent behavior optimized by evolutionary / adaptive
processes. These concepts may in turn be generalized to implement next-generation autonomous
agents; cellular automata; “flocking” self-organized / coalition behavior; evolutionary pattern
search and optimization algorithms; spatial genetic algorithms: and dynamic percolation
networks.

This work has made excellent progress. The completion of the installation of the 1Gbps free-
space optical link between the Drexel and MCP Hahnemann campuses will enabled the
demonstration of this collaboration-enabling capability over an metropolitan area network, and
ultimately over a wide area network.

 41

We developed the code to communicate, control and capture images from the cooled CCD
monochrome camera (Photometrics CoolSnap FX). A dynamic link library has been created
that can be called and used by Java enabled code. The functionality provided by this dynamic
link library has been incorporated into the existing Telemic ‘Server’, enabling it to take control
of the camera and capture images from it. This was a critical and necessary step and it is
important to recognize that this is one of the only uses of this camera in a remote-controlled
environment. A prototype ‘Client’ was developed to test ‘Client-Server’ communications and
image acquisition from this particular camera.

While capturing images a client can control the following features of acquired images:

Exposure time (milliseconds - seconds): Length of time the charge coupled device (CCD) is
accumulating charge This is the time interval for which the charge coupled device (CCD) is
actually exposed to light excitation.

‘Binning’ A method of increasing or multiplying the light-collecting area on the charge-
coupled device by combining the charge from adjacent pixels so that the total charge can be
read out as an image. Horizontal and Vertical binning parameters can be set.

Gain (defines the relationship between the number of electrons acquired on the CCD and the
analog-digital units (ADUs) generated.) This feature allows the intensity levels in the captured
image data to be increased to yield brighter images.

CCD capture region. A region is a user-defined, rectangular exposure area on the CCD. By
specifying 4 co-ordinates the ‘Client’ can control what array of the charge coupled device
(CCD) should be captured. This feature allows one to capture images of a desired region from
the entire field of view.
Image Format. Images can be captured in a number of standard file formats

a) 8 bit JPEG
b) 8 bit TIFF
c) 16 bit TIFF

Time Lapsed Image Acquisition: A ‘Client’ can specify the number of images required and
the delay or time lapse between images (seconds, minutes, or hours.)

Color Rendering (‘Client’ side): This feature also known as ‘Pseudo Coloring’ is under
development and refinement. A captured image can be pseudo colored by applying a color
spread of red, green, blue, magenta, cyan and yellow. This feature is particularly useful for
capturing image data at different wavelengths and creating a composite of these images.

Enhancements and Improvements
The ability to capture images from the Firewire camera and write them to disk has been
somewhat cumbersome because of the requisite intermediate steps necessitating first writing the

 42

captured data to disk as a ‘bitmap’ and then taking this ‘bitmap’ image and converting it to a
‘jpeg’ format and thereafter making it available to the client.

This feature has been considerably enhanced. Now there is no intermediate creation of bitmap
images and ‘bitmap’ to ‘jpeg’ conversion. Images can be captured and written to disk directly as
true ‘jpeg’ files. A feature that is critical for the high-speed image capture and transmission.

At present with existing hardware and networking (using 100Mb/s Ethernet card) infrastructure,
an image capture rate of 16-18 images per second can be obtained while concurrently writing the
images to disk. Thus the client can access images from a buffer on the server thus enabling a
video capture rate of ~15 frames per second, with slight breaks or stops interposed to allow for
buffering of data on the ‘Client’.

The Telemicroscopy software has undergone several changes over the course of this research –
the most important being the completion of the integration of its various modules and versions
into one, composite, software. The Telemicroscopy ‘Client’ and ‘Server’ now feature full control
of the Microscope and both the Firewire and Coolsnap cameras. The ‘Client’ can now either use
the Microscope with the CoolSnapFX camera or the Firewire camera. Use of both cameras at the
same time is possible but is constrained by the optics of the microscope design.

The Firewire camera serves real time video from the microscope. Video rates of up to 10
frames/sec can be obtained. This functionality is now available through the ‘Recorder’ button on
the Microscope Control Panel. A separate Server has been written for this function. All functions
can still be accessed using the same Telemic Client.

CoolSnapFX camera

Several new and important functions have been added

a) Tiling: This feature allows the ‘Client’ to generate a Topographic Scan of the Specimen
under investigation. Here the user can map out a specific region of the slide. This area
will be not viewable under one view from the camera. Hence one can program the stage
for capturing pieces of that area and then to piece them all together.

b) Image Saving: Images obtained from the microscope can now be saved. A file Server and
Client have been developed to provide this functionality. Images are saved on the Server
Side. The images saved on the Server by the Client can be previewed and saved to Disk
on the Client Side. The Client can preview the saved images and download selected
images in a zip file.

c) Image Processing: Several more Pseudo Coloring options were added along with some
new Image Processing functions for captured Images.

Microscope Control

a) Objective Control: Objective changing is now possible by means of a newly acquired
turret changer module. The client can change between 4x, 10x, 20x and 40x objectives.

 43

b) Focus Tracking: This feature allows the client to focus back to a snapped image. Thus a
‘Client’ can go back and forth between preferred focus settings.

c) Access Control: This feature allows only one user to take control of the microscope and
cameras. The control can be released and requested. The control is circulated among
‘Clients’ as a token. Functionality other than microscope and camera control, like
Discuss, Chat, etc is available to passive clients.

This work was demonstrated, via remote access to the system, at the Next Generation Internet
Principal Investigator meeting on January 6, 2002 in Tyson’s Corner VA.

Telemicroscopy Software version 2.0

The current release of the software has reached the designation of version 2.0
The telemicroscopy software or ‘Telemic’ has undergone several noteworthy revisions, which
include a complete redesign of its GUI (graphical user interface) and added new and critical
features. Several persistent bugs have also been eliminated, the most important being the
crashing of the ‘file server’ after several hours of online activity.

The modifications / upgrades to the software can be classified into three categories.

a) Changes to Microscope Control
b) GUI changes.
c) Bug fixes

Changes to Microscope Control
The ability to move the stage to any specified X-Y coordinates, within the available field of
excursion is graphically emulated on the screen that maps the area available for stage movement
and then provides cursors to mark the x-y coordinates.

This graphical emulation or the ‘stage movement area’ has been redesigned to dynamically
depict the current position of the stage within the available field of excursion. When a user
connects to the ‘Telemic’ the crosshair will move to reflect the current position of the X-Y stage
in the entire field of movement for the X-Y stage. This initial position will be the defined ‘origin’
for the users current session. The ‘origin button’ will bring the user back to this point where the
user’s session started. The origin button will not move the stage to the origin of the stage. To
accomplish this one will have to use the ‘calibrate’ button. The crosshair will always reflect the
current position of the stage within the field of movement after both coarse and incremental
movements of the stage.

Full ‘UNDO’ functionality is now provided to undo both incremental and coarse movements of
the stage.

A new and much awaited function has been added which allows the users to mark particular
positions of interest within the field of movement of the X-Y stage and retrace back dynamically
to these positions. Currently a user can mark a total of 8 positions. The marked positions are
displayed with a numerical “stamp” on the stage movement screen. To retrace back to a marked

 44

position the user can select the appropriate position number from a checkbox provided on the
microscope control panel.

GUI Changes
Several GUI (graphical user interface) changes have been made to the Telemic ‘Client’ which
include repositioning, addition/deletion of several controls. The most important among these
changes being, the redesign of the illumination and focus control to a round-knob slider from a
scrollbar.

Most importantly, the focus control knob can be rotated, by dragging the mouse, either in the
clockwise or anti-clockwise direction to increase, decrease the focus respectively. This enables
affectively an infinite bi-directional loop (no fixed end point restriction!).

The illumination or brightness control knob can be rotated to set brightness (light intensity
levels) between 0 and 10V DC.

It is important to emphasize that both these round-knob slider controls provide true real-time
control of their respective hardware on the microscope.

Figure 13: Improved GUI

Bug Fixes
1) Correction of instability in the File Server. The file server memory management functionality
has been redesigned. This corrects a problem that caused it to crash after several hours of usage.

2) The “collaboratory” discuss feature has been reworked to eliminate mouse sensitivity
problems, and has been made more intuitive.

The changes/new features summarized above have been implemented after many sessions of use,
and incorporate end-user feedback / critique. These “test” sessions were the major motivating
factor for the Telemicroscopy software upgrade from its earlier incarnation (beta) releases to a
more robust and fully integrated version 2.0.

The development process of the Telemicroscopy software is now complete. The software is fully
operational and has been thoroughly tested on High Speed Network and the Drexel 100 Mbps
network.

 45

New Horizons

Sony EVI-D100 Web camera:
We experimented with adding live net-conferencing capability using a Sony EVI-D100 camera
that is specially designed to allow multiple degrees of freedom control. This camera has a
programmable pan, tilt, zoom, focus and several modalities of image capturing and previewing.
We have incorporated this camera into the Telemic project to serve as a “third eye” by
customizing our client-server based software. Accessing this camera and viewing live images
provides the “remote” participants with added flexibility for panoramic observation of distant
events of perceived telepresence.

The camera is interfaced to a frame grabber card (IEEE-1490 Matrox Meteor-II), allowing the
end- user to capture and preview real-time video. The camera control system is accessed via its
RS232 (serial port) interface to the server. The camera ‘Server’ interface is Java enabled,
allowing control of various camera functions such as: pan / tilt / zoom, etc. A retrace capability
is being added to facilitate recall (up to 8 positions).

Multi-Channel Remote Data Acquisition System:
It became apparent to us that imaging cellular culture evolution over time will be greatly aided
by the ability to monitor function attributes of the cellular network dynamics. In particular
remote multi-channel (real-time) data acquisition would be very useful.

Signal acquisition is an integral part of all experiments conducted using tissue culture and
cellular engineering strategies to promote cellular proliferation and trans-differentiation.

In view of the above, the proof of concept work has been started with the goal of integrating a
data acquisition capability into the Telemic. We are testing this concept, which is a 32-channel
waveform recording system (A/D 16-bit measurement resolution, 250kHz sampling rate, and a
maximum measurement range of ±10V full scale). This device is interfaced to the PC via a
standard USB port.

We have run several simulations in a networked environment. The current prototype enables
real-time data 16-channel signal acquisition, and remote display (no remote control).

A dedicated browser can be used to preview recorded waveforms in real time, limited only by
network speed and server disk access time. The tissue culture and cellular engineering studies
conducted using this extension of the Telemicroscopy software consisted of a programmable (4-
channel) stimulator that paced the cells for several hours. We are currently working on
developing a client server model for interfacing a commercial data acquisition device (Windaq
DI-720) with the Telemicroscopy software using Java.

High-speed Network Implementation:
We have successfully conducted the testing of the Telemicroscopy software on the High Speed
Network. The high-speed network is operating at full Gigabit per second capability. We are
currently in the process of upgrading our network interface cards (see specs bellow) to facilitate
multi-platform (Sun/Solaris 8; Windows NT; Windows 2000; Wireless 801a protocol) imaging
and signal acquisition from the live-cell experiments.

 46

This card provides easy, cost-effective migration to Gigabit Ethernet over Category 5 cabling.

High network performance and flexibility, using PCI-X bus at 64bit/133MHz alleviates server
bottlenecks while maximizing uptime.

Link types supported: Ethernet 10Base-T, Ethernet 100Base-TX, Ethernet 1000Base-T
Standards compliance: IEEE 802.3-LAN; IEEE 802.3U-LAN; IEEE 802.3z -LAN; IEEE
802.1Q; IEEE 802.3ab-LAN; IEEE 802.1p Plug and Play.

Live Cell Microscopy- Summary of Results and Lessons Learned
A collaborative computational environment was created to enable topographic data acquisition
and processing remotely. The microscope system that we implemented is well suited for remote
control, and is equipped with direct digital image recording and computer interfaces to the
microscope optics and cell culture stage. Importantly, the interactive control of image acquisition
is achieved from any site on the Internet. Sophisticated image analysis and visualization is also
provided for those accessing the microscope from a remote site. It is quite feasible that tasks
requiring extensive computation can be “transparently” distributed to high performance
computers on the network. The goal of porting the associated image processing and analysis
software into a network-based resource available to geographically distributed researchers was
fully realized.
The ability to acquire images remotely (and control the microscope stage movement) facilitated
the study of the electro-mechanical perturbations on the dynamic behavior of fluorescent-labeled
structures across large spans of cellular terrain that would not be possible otherwise

Live-cell microscopy isn’t a simple computer program. To do good (2D / 3D) microscopy,
you really do need to understand optics, statistics, digitization and their interactions. There is
always a tradeoff between getting enough photons from your specimen to make a good image
and hurting the specimen (maintaining cell viability) by subjecting it to too much illumination.
Doing good live-cell microscopy implies making every effort to optimize the optical and
digitizing conditions.

Because the correlation between in vitro and in vivo phenomena is paramount for mammalian
live-cell biology, it is of the utmost importance to accurately simulate the host conditions of the
isolated specimen during live-cell microscopy. One solution to the above problems is to observe
cells in culture maintained using a micro-environmental control system increasing the
complexity (with justification) of Telemic accessibility.

Cell Biology 2001, a market research study just released by Microscopy/Marketing & Education
(MME) reveals that two thirds of the microscopists surveyed at December’s American Society
for Cell Biology (Washington, DC) currently use or, within the next year, plan to move to live
cells as the basis for their research. Prompted by the recent introduction of vital fluorochromes
such as GFP (green fluorescence protein), this new paradigm has far-reaching implications for
fundamental microscopy as well as the fields of drug discovery and biotechnology. The
inevitable desirability of distributed cell imaging capability is a natural progression of the ever-

 47

increasing network bandwidth and need for multidisciplinary collaboration and information
sharing.

Figure 14: Live adult human (mesenchymal) stem cells co-cultured with human cardiac

myocytes

d.3 Gbps Infrastructure (Stewart Personick, et. al.; Dom Imbesi, et. al.)

The fiber link between Drexel and Penn was installed, and is operating at net-payload
throughputs exceeding 200 Mbps in support of our distributed neuro-anatomical distributed
database access activity. This net-payload TCP/IP throughput is exceeding our expectations for
off-the-shelf PC-to-server performance.

We (Drexel and Lucent) installed a 1-Gbps free-space optical link at sites on the Drexel and
Hahnemann University. The free space optical equipment is transmitting 27dBm of optical

Unstained Cardiomyocytes stained with
CMFDA green fluorescence dye

 48

power and receiving -14dBm in each direction. Power margins are more than adequate to ensure
error free bi-directional transmission at the Gbps rate. The installation, integration and test
activity was conducted over a two-day period. Some reliability problems were encountered, and
were corrected.

d.4 Global Digital Mapping (Somerset Geographics: Brian Schmult)

Assessment of Worldwide Data Availability to Support Real-time Fly-Through

The Objective:
The overall objective of the research is the creation of a compelling application that requires
high-bandwidth communication, given an appropriate set of assumptions about the computing
environment. The application under consideration is the interactive fly-through of real-world
terrain with a complete world model available for queries and analysis, plus on-the-fly
simulations of events (forest fires, precipitation runoff, etc.) This combination of requirements is
important, otherwise a user will just download some data once and this is no longer a
communications problem. The real-world terrain requires streaming imagery, aerial or satellite.
For access to arbitrary locations, this is probably too large to store locally. The simulations
imply the need to do processing locally, possibly on the imagery, thus requiring the raw data.
(Otherwise this is simple rendering that might be done at a server followed by MPEG
compression, greatly reducing the communications requirements.) Finally, the model is critical,
as strictly image data is of little value.

Basic fly-through using imagery and vector data is easy and has already been done using locally
stored data. The key to a more compelling application is in the completeness and accuracy of the
dataset. (i.e., the vector roads must overlay those in the image.) The completeness is also
important to ensure that communications remains important. If the data is spotty people will
download their area of interest once and save it. The ability to look anywhere will keep people
looking everywhere and make local storage impossible.

Methodology:
References to non-classified data (commercial and free) are now readily available on numerous
Internet sites. Many sites have pages devoted solely to links to a multitude of other sites housing
specific data. Hence the main initial strategy was to search for the specific data required. To the
extent that it is already available, portions of the activity are complete with only the organization,
assessment and documentation of the quality of said data. Filling in the holes then requires more
research. The methodology for this research was not developed adequately for a write-up at the
time of termination of this activity.

Required Data:
These are the general data requirements:

1. Aerial and/or satellite imagery, as consistent as possible.
2. Digital elevation models, as consistent as possible.
3. Roads, political boundaries, significant hydrology and possibly railroads. Must be

precisely located so that they sit properly on the imagery.

 49

4. Building locations as centroids, rough and/or detailed outlines. These are not strictly
necessary, but would greatly enhance the utility and appeal.

5. Attributes: feature names, building addresses, etc.

In all cases the objective is to locate a dataset that is as broad and self-consistent as possible. In
practice this will be done on a national and regional basis. Data from different regions will not
be of the same quality, and may not edge-match.

Imagery:
Imagery is collected by satellite or plane (aerial). Traditionally satellite coverage is much broader
but at much lower resolution. More recently higher-resolution satellites have become available.
Their resolution is good enough for our purposes, so it may be only a matter of time and money
to get the coverage. Aerial imagery can be of much higher resolution, depending on the
requirements and cost of the mission. Coverage can be spotty especially for very high-resolution
missions, which are necessarily flown at low altitude and hence are time consuming. Note that at
least in the U.S., the NAPP (National Aerial Photography Program) provides nation-wide
coverage with consistent attributes, except that the collection time (year) is spread out.

Attributes of Imagery

The most basic attribute is the resolution. Two definitions are used by the United States
Geodesic Survey, USGS. The first is spatial resolution, the minimum distance between two
adjacent features or the minimum size of a feature that can be detected. The second is the
ground sample distance, GSD, the distance on the ground represented by each pixel in the x and
y components. The spatial resolution is usually greater (of lower quality) than the GSD. GSD is
the figure usually quoted.

The other primary attribute is spectral content. Generally an image will be Black & White, BW,
Color, or Color Infrared, CIR, CIR is also called pseudo color and false color. In a CIR image
the normal visible colors are used but they do not correspond to visible colors. Rather vegetation
has one color, asphalt has another, etc. Satellites can also use non-film sensors to record at other
wavelengths.

Imagery is distributed in chunks whose size and extent depends on the resolution. Two common
sizes in the US are the quadrangle and the quarter quadrangle or quarter-quad. The quadrangle
is a rectangle 7.5 minutes in latitude by 7.5 minutes in longitude. (Note that it is rectangular only
when projected into a planar coordinate system.) A quarter-quad is 3.75 minutes on a side.

Raw images contain both camera distortion and elevation distortion. Elevation distortion means
that the top of a tall object located anywhere except along the camera axis will not be properly
located. Instead of being directly over its base it will be off to the side. This means you cannot
determine its coordinates. This can be automatically corrected in the case of terrain by applying
a digital elevation model. This permits the pixels to be moved to their proper place. There is
presently no cure for non-terrain objects, such as the Washington Monument. Images corrected
in this manner are known as “orthophotos.” The same process used to create orthophotos also
corrects for camera distortion.

 50

Coverage refers to how much of the total world is available. This is different from vector data
since vector data can cover empty areas (i.e., water) properly. Imagery however shows up as
missing unless the area is explicitly indicated to be water. In such cases software can fill in such
spaces on the fly, or images can be generated that match adjacent existing images.

United States Imagery

Imagery for almost the entire country is available from the Unites States Geological Survey
(USGS) through the National Digital Orthophoto Program (NDOP), whose primary source of
imagery is the National Aerial Photography Program (NAPP.) This is the same data served by
the well-known Microsoft TerraServer. These images are distributed as Digital Ortho Quarter
Quads (DOQQs.) The main Web site at the USGS for DOQQs is

 http://www-wmc.wr.usgs.gov/doq/

Among other things, complete specifications are available in PDF files for downloading.

The GSD resolution of a USGS DOQQ is 1 meter. They can be either BW or CIR. According to
the USGS Web site, complete DOQQ coverage of the conterminous United States is expected by
2004. Thereafter the update cycle will be 10 years for most areas, and 5 years in areas where land
use change is more rapid. The above Web site has further details on the current coverage status.
The people at USGS-EROS say however that the state maps on that site are not always up to
date. A current data file is available at

ftp://edcftp.cr.usgs.gov/pub/metadata/DOQ/doqq.tar.gz

The US coverage by DOQQs is presented via table and map. The USGS data files do not
describe quarter quad areas that are not yet done, nor ones covering only internal water bodies.
That data was derived by comparing the completed areas against a coarse resolution map of the
conterminous US. This gives an approximate count of water areas and of incomplete quarter
quads. The table is shown below. It is apparent that coverage is available only in B&W form.
By converting areas of CIR-only coverage to B&W, we can get 88% coverage of the
conterminous U.S.

Type of Quarter Quad Count % Land
Total Land Quarter Quads 213,027
B&W Quarter Quads 152,883 72%
CIR quarter Quads 44,938 21%
Available as either 187,585 88%
Missing 25,442 12%

Table 2: US Coverage by DOQQ

 51

It is possible that holes in populated areas might already be filled by local acquisition. This is
relatively unlikely however since the NAPP concentrates on populated areas. The holes are
hence unlikely to be of interest to private parties, or to local governments who would have to
foot the entire cost of a mission.

The latest satellites can create B&W images comparable to those from the NDOP. Space
Imaging’s “Pro” series has a 1-meter GSD pixel and an RMS error of 4.8 meters, and is
supposed to meet U.S. National Map Accuracy Standards for quarter quad mapping. These are
also ortho rectified. Hence they could in theory fit with the DOQQs.

 However, at retail prices it would cost in the tens of millions of dollars to collect the roughly
25,000 quarter quads still missing. It is unclear whether this would be feasible, since the data is
apparently going to get collected by the USGS anyway.

Opportunities for future work:

Image, DEM and vector data for the US is generally available from the Federal Government,
although in various forms. Many Government and other web sites will contain pointers to data
sources. Holes in national coverage will be more difficult to fill, as legwork will be required to
see if suitable local datasets are available. Building data is not yet generally available although
research is ongoing on automatic extraction from imagery. Other national data should be pursued
in a similar manner, starting with national government sources in each country, plus regional
suppliers. There are several web sites devoted to regional data, plus lists of national suppliers.
http://harbert.geology.pitt.edu/images/web.html appears to be one of the better ones. After this,
substantial effort will be required to fill in holes.

d.5 MONET East Ring (Lucent)

Ongoing support was provided by Lucent for the maintenance of the East Ring of the MONET
optical networking testbed.

 52

E. All-Optical Networking Devices and Subsystems

e.1 All-Optical Networking Devices and Subsystems (Paul Prucnal, et. al.)

This research is focused on the demonstration of an experimental prototype of an all-optical
digital regenerator that is of the “3R” type” : i.e., including functionality for reshaping, retiming,
and regeneration. The regenerator is based on a device called a “TOAD” (Terahertz Optical
Asymmetrical Demultiplexer).

Optical pulse width management / format converter

An optical pulse width management / format converter was designed and demonstrated. The
format converter is made of an optical Sagnac loop (interferometer) with a semiconductor optical
amplifier, SOA, in the loop, displaced from its center. The degree of displacement of the SOA
from the center of the loop determines the output pulse width. The format converter can convert
a return-to-zero, RZ, formatted signal to non-return-to-zero, NRZ, format. With its setup, one
can stretch 1.3ps input pulses to any value between 4ps to 58ps. This means that, for bit rates
above 20Gb/s (50 ps pulse spacing), one can convert RZ formatted data into NRZ formatted
data. For bit rates lower than 20Gb/s, the setup provides a powerful tool to manage pulse width.

Experiments to test a method for reducing data timing jitter, for use in our proposed 3R
regenerator

The idea underlying the experiments described below is to send OC192 (10 Mbps) data into the
“Clock” port of a TOAD, and to use this data to switch out clock pulses entering the “IN” data
port of the TOAD.

TOAD

IN OUT

Clock
² x

2x2

LP

LP

P

NLE

AD

2x2

Figure 15: TOAD Schematic

 53

Figure 16: Experimental Setup for Timing Jitter Reduction

If we open the TOAD’s switching window wide enough, we can then accommodate timing jitter
in the data (entering the TOAD clock port) that is less than the switching window i.e., we can
still switch out all of the clock (entering the TOAD data port). The optical signal that is
switched out will have all the information (i.e., pulse on / pulse off) that the input data has, but
with no timing jitter. In addition, because of the TOAD’s transfer function, typical of most
interferometers, amplitude noise from the input is reduced after going through the TOAD. This
is because the intensity fluctuations at the input become phase fluctuations in the TOAD. And
since we’re operating near the PI phase shift region, the output varies very little with respect to
the phase shift. An inherent limitation of this configuration is its pattern dependency... due to the
finite recovery time of the semiconductor optical amplifier, SOA. This effect is more evident at
10Gb/s than 2.5Gb/s. Injecting CW light of a different wavelength into the SOA can reduce the
recovery time of the SOA, thus reducing the pattern dependency. The experimental setup we
used to demonstrate this is as shown in Figure 16. An improvement in performance, using CW
light injection, was demonstrated, initially, using eye diagrams.

PC

50:50

TOAD

10GHz
EDFL 1

10:90
50:50

OTDL

EDFA

Monitor
Port

SOA

Filter Attenuator

BERT

DFB

MOD 10GHz
EDFL2

Shaker 10 GHz Pattern
 Generator

 54

Figure 17: Input to the TOAD, with added timing jitter

In Figure 17, timing jitter has been added to the input data stream by increasing and decreasing
the length of an optical path (“Shaker” in Figure 16) using a mirror on a speaker operating at 10
Hz. The timing jitter is 9 ps.

Figure 18: The output of the TOAD, when we inject a third wavelength of CW light into

the TOAD

In Figure 18, CW light at 1539nm. We see that the eye is starting to open. This is because the
CW light is reducing the carrier recovery time inside of the SOA.

 55

Figure 19: The output after the TOAD, with the CW bias light level set at: +7dBm

In figure 19 the eye is wide open. We see that the amplitude variation is also decreased slightly.

The improvement in jitter tolerance that can be obtained using CW light injection can also be
demonstrated using bit error rate measurements. Below are bit error rate, BER, curves plotted
for different CW injection power and SOA current values.

Shown in figure 20, a higher level of CW injection power leads to a decrease in BER. For no
CW injection, a BER floor exists at 10-6. A CW injection of –4.1dBm eliminates the BER floor
at 10-6 and BER less than 10-9 was achieved. A CW injection of –0.9 dBm shifts the BER further
to the left and BER less than 10-10 was achieved. Figure 21 shows the BER as a function of SOA
current. An increase in SOA current corresponds to an increase in the recovery rate of the SOA
and we see a decrease in BER as a result of higher SOA injection current. The observed
response of the TOAD to changing CW injection level as well as SOA current level matches
those predicted by theory. Increasing the CW injection level increases the SOA recovery rate
and thereby decreases the effect of pattern dependency. This is readily observed in the BER
curves shown in figure 20. Increasing the current also reduces the recovery time of the SOA and
results in a BER curve shift to the left in figure 21. In our experiments done at 10Gb/s, both
methods of decreasing the SOA recovery time resulted in a direct performance advantage. At
40Gb/s, we believe that further reducing the SOA recovery time using even higher levels of CW
injection is critical for the TOAD to regenerate optical data streams.

 56

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5
1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1
 cw injection - 0.9 dBm
 cw injection - 4.1 dBm
 no cw injection

Bi
t E

rro
r R

at
e

Power Received (dBm)

Figure 20: BER vs. CW power

-14 -12 -10 -8 -6 -4
1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

Bi
t E

rro
r R

at
e

Power Received (dBm)

 SOA current @ 197.45 mA
 SOA current @ 180.00 mA
 SOA current @ 170.00 mA
 SOA current @ 160.00 mA

Figure 21: BER vs. SOA current

 57

All-Optical Clock Recovery

In the above experiments on 3R regeneration we employed an all-optical 3R regenerator that
uses a locally generated optical clock. The regenerator shows very high performance, and error
free operation at OC-192. However, to make this device more practical, the clock signal needs
to be extracted (all-optically) from the incoming data.

Below we explore the possibility of building such a clock recovery unit, based on a mode-locked
figure-eight laser with a TOAD as an all-optical gate.

Incoming Data Signal

Regenerating GateAll optical mode-locked laser
based on the TOAD

3R All-optical Regenerator

OA

TOAD

Control
In OutClock Recovery

Figure 22: All-optical 3R Regenerator

All-optical injection-mode-locking is an attractive way to derive a clock signal from the
incoming optical pulse stream. In the mode-locked figure-eight laser, the incoming optical data
signal will perform the modulation of the light in the laser cavity. I.e., the TOAD acts as an
optical modulator. The proposed experimental setup is shown in figures 22 and 23.

 58

TOAD
3dB

SOA

WDM 10:90

EDFA

PC

IsolatorFilter

OUT portIN port

OTDL

Figure 23: Experimental structure of mode-locked figure-eight laser using a TOAD

We have developed an analytical model, with a goal of analyzing the pulse width and spectral
characteristics of the recovered clock signal at the output of such a clock recovery unit.

Results obtained:

Figure 24 shows an example of the simulated output pulse shape and the associated optical
spectrum.

The output pulse width (full width at half maximum) is 6.5ps, the spectral width is 71.4GHz, and
the time bandwidth product is 0.46.

 59

-50 -40 -30 -20 -10 0 10 20 30 40 50

0

10

20

30

40

50

60

70

6.5ps

Po
w

er
 (m

W
)

Time (ps)

-160 -80 0 80 160

0.0

0.1

0.2

0.3

0.4

0.5

71GHz

Po
w

er
 (m

W
)

Frequency (GHz)

Figure 24: Waveform and spectrum of the mode-locked output pulses

In Figure 24 the carrier lifetime is 300ps. The offset of SOA in the TOAD is 12ps. The
saturation energy of the SOA is 1pJ. The input pulse width is 10ps. The peak power is 100mW.
The bandwidth of the filter is 1nm.

In the mode locking process, the offset of the SOA in the TOAD has a direct influence on the
performance of the output clock recovery unit.

We see this in Figure 25, where, as in Figure 24, the input pulse width is 10ps. The output pulse
width is 6-9ps. The time bandwidth product is 0.46-0.48; which approaches the limit (0.44) of
Gaussian pulses.

 60

10 12 14 16 18 20
0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Offset of SLA ∆τ (ps)
Ti

m
e

ba
nd

w
id

th
 p

ro
du

ct
 ∆

t∆
ν

10 12 14 16 18 20
5

6

7

8

9

Offset of SLA ∆τ (ps)

pu
ls

ew
id

th
 ∆

t (
ps

)

40

60

80

100

S
pectrum

 w
idth ∆ν (G

H
z)

Figure 25: Pulse width, spectrum, and time-bandwidth product vs. the Offset of the SOA in

the TOAD [10 ps input pulses]

In Figure 25 the input pulse width is 10ps. The peak power is 100mW. The bandwidth of the
filter is 1nm. The carrier lifetime is 300ps.

In Figure 26, the input pulse width is 5ps, and the output pulse width is 3-6ps. The chirp of the
output pulse increases slightly, with a time bandwidth product of 0.48-0.50. Under these
conditions, the output can retain the pulse width of the input.

 61

4 6 8 10 12 14 16
3

4

5

6

7

Offset of SLA ∆τ (ps)

pu
ls

ew
id

th
 ∆

t (
ps

)

60

80

100

120

140

160

Spectrum
 w

idth ∆ν (G
H

z)

4 6 8 10 12 14 16
0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Offset of SLA ∆τ (ps)

Ti
m

e
ba

nd
w

id
th

 p
ro

du
ct

 ∆
t∆
ν

Figure 26: Pulse width, spectrum, and time-bandwidth product vs. the Offset of the SOA

in the TOAD [5 ps input pulses]

In Figure 26 the input pulse width is 5ps. The peak power is 100mW. The bandwidth of the filter
is 2nm. The carrier lifetime is 300ps.

In both Figure 25 and 26, when we decrease the window size of the TOAD, the pulse width of
the output will decrease and the spectral width will increase.

Our analytical modeling shows that a mode-locked figure-eight laser can meet the basic
requirements, as an all-optical clock extractor, for an all-optical 3R regenerator.

 62

REFERENCES

 Note: References below are organized by report sections and
reprinted in the APPENDIX, when highlighted in bold font.

Section - b.1 Ultra High Capacity IP Router (Martin Zirngibl, et. al.)

[1] J. Gripp, P. Bernasconi, C. Chan, K. L. Sherman, and M. Zirngibl, “Demonstration of a 1

Tb/s optical packet switch fabric (80*12.5 Gb/s), scalable to 128 Tb/s (6400*20 Gb/s),”
in Proc. ECOC’00, 2000, post-deadline paper 2.7. (see appendix page 70)

[2] J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardwaj, Y. Su, K.

Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link,
R. Seitz, P. Mayer, and M. Berger, “Demonstration of a 1.2 Tb/s optical packet switch
fabric (32*40 Gb/s) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable
lasers, and a high-performance NxN AWG,” in Proc. ECOC’01, 2001, post-deadline
paper ThA4.8. (see appendix page 72)

[3] J. Gripp, M. Duelk, J. Simsarian, P. Bernasconi, A. Bhardwaj, K. Sherman, K. Dreyer, M.

Zirngibl, and O. Laznicka, “4 x 4 demonstration of a 1.2 Tb/s (32 x 40 Gb/s) optical
switch fabric for multi-Tb/s packet routers,” in Proc. ECOC’02, 2002, post-deadline
paper PD2.4. (see appendix page 74)

[4] J. Simsarian, A. Bhardwaj, K. Dreyer, J. Gripp, O. Laznicka, K. Sherman, Y. Su, C. Webb,

L. Zhang, and M. Zirngibl, “A widely tunable laser transmitter with fast, accurate
switching between all channel combinations,” in Proc. ECOC’02, 2002, paper 3.3.6. (see
appendix page 76)

[5] A. Bhardwaj, J. Gripp, J. Simsarian, and M. Zirngibl, “Long-term wavelength switching

measurements with random schedules on fast tunable lasers,” in Proc. ECOC’02, 2002,
paper 11.5.3. (see appendix page 78)

[6] [M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M.

Zirngibl, “16-channel digitally tunable packet switching transmitter with sub-
nanosecond switching time,” in Proc. ECOC’02, 2002, paper 3.3.3. (see appendix page 80)

[7] M. Duelk, J. Gripp, J. Simsarian, A. Bhardwaj, P. Bernasconi, M. Kauer, and M. Zirngibl,

“Next generation packet routers,” in Proc. SPIE’02, vol. 4872, 2002.

[8] P. Bernasconi, C. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, “Large

N × N waveguide grating routers,” J. Lightwave Technology, vol. 18, no. 7, pp. 985–991,
July 2000.

 63

Section - C. Architecture

[9] Personick, S.D. “Evolving Toward the Next Generation Internet: Challenges in the Path

Forward”, IEEE Communications Magazine, pp 72-76, Vol. 40, No. 7, July 2002

Section - c.1 Network Congestion and QoS Management Strategies (Stewart
Personick, et. al.)

[10] Personick, S.D., “Combining Circuit and Packet Switching in Next Generation Internet

Backbone Networks” [invited talk], 2001 Topical Meeting on Photonics in Switching,
Monterey CA, June 13-15, 2001. (see appendix page 82)

[11] Hongyuan Shi and Harish Sethu, “On Scheduling Real-Time Traffic under Controlled Load

Service in an Integrated Services Internet,” Journal of Communications and Networks, vol.
5, no. 1, pages 100-108 March 2003.

Section - c.2 QoS Architectures and Mechanisms (Harish Sethu, et. al.)

[12] Adam J. O’Donnell and Harish Sethu, “Congestion Control, Differentiated Services, and

Efficient Capacity Management through a Novel Pricing Strategy,” to appear in
Computer Communications. (see appendix page 87)

[13] Hongyuan Shi and Harish Sethu, “An Evaluation of Timestamp-Based Packet Schedulers

Using a Novel Measure of Instantaneous Fairness”, to appear in Proceedings of the
Workshop on End-to-end Service Differentiation, held in conjunction with the IEEE
International Performance, Computing, and Communications Conference (IPCCC), April
2003, Phoenix, Arizona, USA.

[14] Yunkai Zhou and Harish Sethu, “Toward End-to-End Fairness: A Framework for the

Allocation of Multiple Prioritized Resources,” to appear in Proceedings of the Workshop on
End-to-end Service Differentiation, held in conjunction with the IEEE International
Performance, Computing, and Communications Conference (IPCCC), April 2003, Phoenix,
Arizona, USA.

[15] Salil S. Kanhere, Harish Sethu and Alpa B. Parekh “Fair, Efficient and Packet Scheduling

using Elastic Round Robin,” in IEEE Transactions on Parallel and Distributed Systems
March 2002, volume 13, number 3, pages 324-336. (see appendix page 114)

[16] Salil S. Kanhere and Harish Sethu, “Low-Latency Guaranteed-Rate Scheduling using

Elastic Round Robin,” in Computer Communications September 2002, volume 25,
number 14, pages 1315-1322. (see appendix page 127)

[17] Yunkai Zhou and Harish Sethu, “On the Relationship between Absolute and Relative

Fairness Bounds,” in IEEE Communication Letters January 2002, volume 6, number 1,
pages 37-39.

 64

[18] Salil S. Kanhere and Harish Sethu, “On the Latency Bound of Pre-Order Deficit Round
Robin,” in Proceedings of the IEEE International Conference on Local Computer Networks
(LCN) November 2002, Tampa, Florida, USA.

[19] Salil S. Kanhere and Harish Sethu, “On the Latency Bound of Deficit Round Robin,” in

Proceedings of the IEEE International Conference on Computer Communications and
Networks (ICCCN) October 2002, Miami, Florida, USA.

[20] Yunkai Zhou, Madhusudan Hosaagrahara and Harish Sethu, “ Opportunity-Based Deficit

Round Robin: A Novel Packet Scheduling Strategy for Wireless Networks ,” in Proceedings
of the Workshop on High-Performance Switching and Routing (HPSR) May 2002, Kobe,
Japan.

[21] Adam J. O'Donnell and Harish Sethu, “A Novel, Practical Pricing Strategy for Congestion
Control and Differentiated Services,” in Proceedings of the IEEE International Conference
on Communications (ICC) April 2002, New York City, New York, USA.

[22] Yunkai Zhou and Harish Sethu, ”On the Effectiveness of Buffer Sharing in Multimedia

Server Network Switches with Self-Similar Traffic,” in Proceedings of the IEEE
International Conference on Communications (ICC) April 2002, New York City, New
York, USA.

[23] Hongyuan Shi and Harish Sethu, ”On Scheduling Real-Time Traffic under Controlled

Load Service in an Integrated Services Internet,” in Proceedings of the IEEE Workshop
on High-Performance Switching and Routing (HPSR) May 2001, Dallas, Texas, USA. (see
appendix page 135)

[24] Salil S. Kanhere and Harish Sethu, “Fair, Efficient and Low-Latency Packet Scheduling

using Nested Deficit Round Robin,” in Proceedings of the IEEE Workshop on High-
Performance Switching and Routing (HPSR) May 2001, Dallas, Texas, USA.

[25] Salil S. Kanhere and Harish Sethu, “Fair, Efficient and Scalable Scheduling without Per-

Flow State,” in Proceedings of the IEEE International Performance, Computing and
Communications Conference (IPCCC) April 2001, Phoenix, Arizona, USA.

[26] Madhusudan Hosaagrahara and Harish Sethu, “A Novel Enhancement to the Virtual Clock

Algorithm and its Analysis,” in Proceedings of the Applied Telecommunications Symposium
(part of Advanced Simulation Technologies Conference) April 2001, Seattle, Washington,
USA.

[27] Madhusudan Hosaagrahara and Harish Sethu, “A Simulation Study of the Impact of VC

Merging on the Delay in an MPLS Domain,” in Proceedings of the Applied
Telecommunications Symposium (part of Advanced Simulation Technologies Conference)
April 2001, Seattle, Washington, USA.

[28] Hongyuan Shi and Harish Sethu, “An Evaluation of the Longest-Queue-First Scheduler for

Routers in a Differentiated Services Domain,” in Proceedings of the Applied

 65

Telecommunications Symposium (part of Advanced Simulation Technologies Conference)
April 2001, Seattle, Washington, USA.

[29] Hongyuan Shi and Harish Sethu, “Virtual Circuit Blocking Probabilities in an ATM Banyan

Network with bxb Switching Elements,” in Proceedings of the Applied Telecommunications
Symposium (part of Advanced Simulation Technologies Conference) April 2001, Seattle,
Washington, USA.

[30] Harish Sethu, Hongyuan Shi, Salil S. Kanhere and Alpa B. Parekh, “A Round-Robin

Scheduling Strategy for Reduced Delays in Wormhole Switches with Virtual Lanes,” in
Proceedings of the International Conference on Communications in Computing June 2000,
Las Vegas, Nevada, USA.

[31] Yunkai Zhou and Harish Sethu, “A Simulation Study of the Impact of Switching Systems

on Self-Similar Properties of Traffic,” in Proceedings of the IEEE Workshop on Statistical
Signal and Array Processing (SSAP) August 2000, Pocono Manor, Pennsylvania, USA. (see
appendix page 140)

[32] Yunkai Zhou and Harish Sethu, “Performance of Shared Output Queueing in ATM Switches

under Self-Similar Traffic,” in Proceedings of the Applied Telecommunications Symposium
(part of Advanced Simulation Technologies Conference) April 2000, Washington, D.C.,
USA.

[33] Yunkai Zhou and Harish Sethu, “Trade-Offs Between Delay Jitter and System Design

Properties of Switching Networks,” in Proceedings of the Applied Telecommunications
Symposium (part of Advanced Simulation Technologies Conference) April 2000,
Washington, D.C., USA.

Section - c.3 Embedded Network Processing (Jonathan Smith, et. al.)

[34] Steve J. Muir, Piglet: An Operating System for Network Appliances, Ph.D. Thesis

University of Pennsylvania, 2001. (see appendix page 145)

Section - c.4 IP over WDM (Mohamed Ali, et. al.)

[35] C. Assi, A. Shami, R. Kurtz, and M. A. Ali, “Optical networking and real-time

provisioning: An integrated vision for the next-generation Internet,” IEEE Network
Magazine, July/Aug. 2001, Vol. 15 No. 4, PP. 36-45. (see appendix page 262)

[36] C. Assi, Y. Ye, A. Shami, S. Dixit, I. Habib, and M. A. Ali, “Designing a survivable IP-

over-WDM network,” OptiComm 2001, PP. 1-11, Denver, Colorado, Aug. 01.

[37] A. Shami, Y. Ye, C. Assi, S. Dixit, and M. A. Ali, “A simple distributed signaling algorithm

for real-time provisioning of optical channels in IP-centric DWDM-based optical networks,”
OptiComm 2001, PP. 112-119, Denver, Colorado, Aug. 01.

 66

[38] Yinghua Ye, C. Assi, S. Dixit, and M. A. Ali, “A Simple Dynamic Integrated
Provisioning/Protection Scheme in IP over WDM Networks,” IEEE Communication
Magazine, Dec. 2001.

[39] A. Shami, C. Assi, and M. A. Ali, “Dynamic wavelength provisioning in DWDM-based

optical networks,” The 5th Working-Conference on Optical Network Design and Modeling
“ONDM 2001”, Vienna, Austria.

[40] A. Shami, Yinghua Ye, C. Assi, and M. A. Ali, “Multi-Path Based Distributed Routing

Algorithm for WDM Routed Networks,” ECOC 2001, Amsterdam, The Netherlands.

[41] C. Assi, Y. Ye, A. Shami, S. Dixit, and M. A. Ali, “On the Merit of IP/MPLS

Protection/Restoration in IP over WDM networks” IEEE GLOBECOM’01, San Antonio,
Texas.

[42] A. Shami, C. Assi, I. Habib, and M. A. Ali, “On the merits of Flooding/Parallel probing-

based signaling algorithms for fast automatic setup and tear-down of paths in IP/MPLS-
over-optical-networks,” IEEE GLOBECOM’01, San Antonio, Texas.

[43] C. Assi, A. Shami, I. Habib, “and M. A. Ali, “GMPLS constraint-based routing of low rate

traffic streams at the IP/MPLS layer in future IP-centric optical networks,” to be presented at
ICC 2002, NY, NY.

[44] A. Shami, C. Assi, I. Habib, and M. A. Ali, “Performance Evaluation of Two GMPLS-

Based Distributed Control and Management Protocols for Dynamic Lightpath Provisioning
in Future IP Networks,” to be presented at ICC 2002, NY, NY.

[45] M. A. Ali, C. Assi, A. Shamis, and R. Kurtz, “Architectural Options for Next-Generation

Networking Paradigm: Is Optical Internet the answer?”, Special Issue IP-over-WDM,
Photonic Network Communications Journal, Nov, 2000, PP. 7-21.

[46] Yinghua Ye, S. Dixit, and M. A. Ali, “On Joint Protection/Restoration in a hybrid, IP-centric

DWDM-based data optical Network,” IEEE Communication Magazine, June 2000, PP. 174-
183.

Section - c.6 Wavelength agility and optical networks (Bahram Nabet, Janet

Jackel, et. al.)

[47] Z. Zhang, C. Assi, A. Shami, and M. A. Ali, “Impact of wavelength converters on the

performance of optical networks”, Opticom 2000, Dallas, Texas, October 2000

[48] X. Chen, B. Nabet, et. al. “Resonant-cavity-enhanced heterostructure metal-

semiconductor-metal photodetector”, Applied Physics Letters, Vol 80, Number 17, pages
3222-3224 April 29, 2002. (see appendix page 272)

 67

[49] P. Toliver, R. Runser, J. Young, and J. Jackel, Experimental Field Trial of Waveband
Switching and Transmission in a Transparent Reconfigurable Optical Network, 2003
Optical Fiber Conference (OFC 2003), Atlanta, GA. (see appendix page 275)

Section - d.2 Cellular Observatory (J. Yasha Kresh, Banu Onaral, et. al)

[50] C. Gustafson, O. Tretiak, L. Bertrand and J. Nissanov Design and Implementation of
Software for Assembly and Browsing of 3D Brain Atlases [Under review for publication].
(see appendix page 281)

[51] Kresh, J.Y., Izrailtyan, I., Wechsler, A.S. “The Heart as a Complex Adaptive System”

Second International Conference on Complex Systems, to be published in “Unifying
Themes in Complex Systems”, ed. Y. Bar-Yam, Perseus Books, 2001.

[52] Onaral, B., Kresh, J.Y., Luzuria, E. “Complex Biological Systems” Plenary Lecture: IEEE-

EMBS Asia-Pacific Conference on Biomedical Engineering, September 26-28, 2000, China

[53] Izrailtyan I., Kresh J.Y., Brozena SC, Morris R.J., Wechsler A.S. “Early Detection of Acute

Allograft Rejection by Linear and Nonlinear Analysis of Heart Rate Variability. Journal of
Thoracic Cardiovascular Surgery 120:737-45, 2000

[54] Rabbany, S.Y., Kresh, J.Y., Noordergraaf, A. “Myocardial Wall Stress: Evaluation and

Management.” Cardiovascular Engineering (Journal for Extracorporeal Circulation, Assist
Devices, Transplantation and Artificial Organs) Vol. 5(1), p. 3-10, 2000.

[55] Kerkhof, P.L., Kresh, J.Y., Li, J.K. “Partial Ventriculectomy, Myocardial Oxygen

Consumption and Ejection Fraction: Cardiodynamic Considerations.” European Heart
Journal Vol 2 (Abstr Supp.), p. 422, 2000

[56] S. Rangappa, J. Entwistle, A. Wechsler, J. Yasha Kresh, Cardiomyocyte-mediated

Contact Programs Human Mesenchymal Stem Cells to Express Cardiogenic
Phenotype; Oral presentation at the American Heart Association’s Scientific Sessions,
Chicago, Illinois, November 17-20, 2002. (see appendix page 294)

[57] V. Noronha, C. Yarman, J. Yasha Kresh, B. Onaral, Remote Monitoring of Cellular

Network Assembly and Function, (to be published) (see appendix page 322)

Section - e.1 All-Optical Networking Devices and Subsystems (Paul Prucnal, et.
al.)

[58] B. C. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R. J. Runser, I. Glesk, and P. R.

Prucnal, “A novel fast optical switch based on two cascaded Terahertz Optical
Asymmetric Demultiplexers (TOAD),” Optics Express 10, 15 (2002). (see appendix page
326)

 68

[59] L. Xu, M. Yao, B. C. Wang, I. Glesk, and P. R. Prucnal, “All-optical Clock Division with
Mode-locked Figure-eight Laser Based on the Slow Carrier Recovery Rate in
Semiconductor Optical Amplifier,” IEEE Photonics Technology Letters 14, (3) 402-404
(2002). (see appendix page 335)

[60] B. C. Wang, L. Xu, V. Baby, D. Zhou, R. J. Runser, I. Glesk, and P. R. Prucnal,

“Experimental Study on the Regeneration Capability of the Terahertz Optical
Asymmetric Demultiplexer,” Optics Communications 199, 83-88 (2001). (see appendix
page 338)

[61] I. Glesk, J. Runser, and P. R. Prucnal, "New generation of devices for all-optical

communications,” Acta Physica Slovaca 51, (2) 151-162 (2001). (see appendix page 344)

[62] R. J. Runser, D. Zhou, B. C. Wang, C. Coldwell, P. Toliver, K.-Li Deng, I. Glesk, and P. R.

Prucnal, “Interferometric Ultrafast SOA-based Optical Switches: From Devices to
Applications,“ Optical and Quantum Electronics 33, No 7/10 841-874 (2001). Special
Issue on Components for Ultrafast Communications. Invited paper. (see appendix page
356)

[63] P. Toliver, I. Glesk, and P. R. Prucnal, "All-optical clock and data separation technique

for asynchronous packet-switched OTDM networks," Optical Communications 173, (1-
6) 101-106 (2000). (see appendix page 390)

[64] P. Toliver, R. J. Runser, I. Glesk, and P. R. Prucnal, “Comparison of three nonlinear

interferometric optical switch geometries,” Optics Communications 175, (4-6) 365-373
(2000). (see appendix page 396)

[65] D. Zhou, I. Glesk, and P. R. Prucnal, “Optical Impulse Response of Semiconductor Optical

Amplifiers in a Counter-Propagation Mach-Zehnder Switch,” OSA Trends in Optics and
Photonics Vol. 32, Photonics in Switching, Paul R. Prucnal and Daniel J. Blumenthal, eds.
(Optical Society of America, Washington DC, 2000), pp. 144-151.

[66] I. Glesk, “TOAD an All-Optical Switch for Ultrashort Pulse Signal Processing and

Networks,” CLEO/PR-2001 Makahuri Messe, Chiba, Japan, June 15-19, 2001.

[67] I. Glesk, R. Runser, and P. R. Prucnal, "New Trends in Optical Communications", in 12th

Czech-Slovak-Polish Optical Conference on Wave and Quantum Aspects of Contemporary
Optics, Jan Perina, Miroslav Hrabovský, Jaromír Krepelka, Editors, Proceedings of SPIE
Vol. 4356, pp. 102-110, (2000).

 69

APPENDIX
Published Papers

DEMONSTRATION OF A 1 Tb/s OPTICAL PACKET SWITCH FABRIC
(80 * 12.5 Gb/s), SCALABLE TO 128 Tb/s (6400 * 20 Gb/s)

Jürgen Gripp, Pietro Bernasconi, Calvin Chan, Karl L. Sherman, and Martin Zirngibl

Bell-Laboratories, Lucent Technologies,
791 Holmdel-Keyport Rd, Holmdel, NJ

(mz@lucent.com)

Abstract: We demonstrated a 1 Tb/s optical packet switch fabric consisting of an 80x80 array waveguide
grating and fast tunable lasers, modulated at 12.5 Gb/s. The architecture is scalable to 128 Tb/s throughput.

To scale cross-connects beyond one Tb/s throughput, the
industry has now embraced optical fabrics /1/ based on
either MEMS or micro bubble technology. These fabrics
feature switching times on the order of milliseconds, which
is insufficient for packet switching. For multi-Tb/s packet
switches, an optical switch fabric with nanosecond setup
time is needed.
A number of electro-optical switch fabrics have recently
been proposed /2,3/. However, these fabrics require
active switching in the core. Alternatively, all-optical
switching has also been studied, together with the
unavoidable network redesign /4,5/. In this paper, we
present an optical packet switch fabric with potential multi-
terabit throughput, which uses a passive optical core and
maintains compatibility with existing networks. In addition,
it is based on commercially available components.

Tunable
Laser Modulator

Line Card
Electronics
and Buffer

Detector

B
us

To Scheduler

To
AWG

Data
In

80x80
AWG

80
 In

pu
t P

or
ts

 (1
2.

5
G

bi
t/s

) 80 O
utput P

orts (12.5 G
bit/s)

Line Card
(Input Half)

Line Card
(Output Half)

Scheduler

~10 m of
Fiber

B
us

Line Card
(Input Half)

Line Card
(Input Half)

Line Card
(Output Half)

Line Card
(Output Half)

a)

b)

Figure 1. a) Switch architecture. b) Input half of a line card.

The switching in this fabric (fig.1), is achieved using the
well-known wavelength routing properties of array
waveguide gratings (AWGs) /6/. A tunable laser followed
by an external modulator is connected to each input port
of an NxN AWG. By tuning the wavelength of the laser,
the data is wavelength-routed to one and only one output
port. The result is a strictly non-blocking NxN crossbar
switch with a switching time equal to the longest tuning
time of all the lasers. Such a fabric has several intrinsic
advantages: The core of the switch is completely passive,
thus eliminating the issue of power consumption and
reducing the likelihood of fabric failure. The initial cost of
such a switch is low and port-units can be added when
they are needed. All the active electronics, except the

scheduler, reside on the port cards, which can be far away
from the core, thus solving the power density and real
estate problems of conventional electrical switches. The
fabric is bit-rate transparent up to the optical channel
bandwidth.

Figure 2. Tunable laser spectrum.

The intrinsic throughput of the current architecture is given
by the number of ports times the modulation data rate. In
this paper, we demonstrate an 80 port switch with 12.5
Gb/s data rate or a throughput of 1 Tb/s. However, 20
Gb/s can be supported by the actual optical channel
bandwidth of 25 GHz and even higher data rates can be
achieved by a proper reshaping of the optical AWG
passband. Finally, this architecture can be scaled by a
factor of N by using the full optical connectivity of an NxN
AWG /7/. In this case, each input line card of fig. 1 is
replaced by N line cards, whose outputs are power
combined, and each output line card by a power splitter, N
fast tunable filters, and N output line cards. For our
current 80x80 AWG, this extended architecture reaches a
maximum throughput of 802 * 20 Gb/s = 128 Tb/s.

Figure 3. Photo of a tunable laser board.

70

The AWG was manufactured using a standard design
platform for SiO2 waveguide technology /8/ with a 50 GHz
channel spacing, a crosstalk level of –35 dB and a worst-
case insertion loss of 7 dB. The fast wavelength switching
is achieved with commercially available multi-section DBR
lasers. The lasers can tune over 44 nm and reach optical
power levels close to 0 dBm (fig. 2). We developed high-
speed driver boards (fig. 3) that allow tuning with
nanosecond rise times (fig. 4). To enable external digital
control, the boards contain programmable logic devices
that store the current settings for all wavelength channels
in lookup tables. We have not noticed any wavelength drift
of the devices over the course of our experiments. Should
wavelength drift become an issue, periodic updating of the
current tables could be implemented.

20 ns / div

 Setup Time
T

λ on

λ off

λ on

1

2

offλ1

2

Fall
Time

Rise
Time

S
(1 2)

Figure 4. Rise, fall, and setup time for a sample transition.

To demonstrate the essential features of the optical part of
the switch fabric, we proceeded in three steps: First, we
switched a laser between different wavelengths and
modulated packets on each wavelength with an external
modulator. Second, we sent data packets through the
AWG and received them without errors and without losing
clock. Third, we repeated the same test while populating
more ports of the AWG with signals to evaluate the impact
of crosstalk.

Figure 5. Setup times for for error-free (<10-11) packet switching.

Digital pulse generators supplied control and gating
signals to a tunable laser board and a BER test set. The
laser switched between two wavelengths λi and λj once
every 2 µs (fig. 4), and its light was modulated and sent
into two ports of the AWG. The two ports were chosen
such that light at λi or λj reached the same output port
from either one or the other inputs, and then continued to
the BER receiver. The BER pattern generator was then
used to send pseudo random bit sequences with a data
rate of either 10 or 12.5 Gb/s and a word length of 231-1
through the AWG. By moving the edges of the gating
signal with respect to the laser trigger, we measured the
maximum windows of error-free data transmission, both
for data arriving on λi and on λj. Changing the data rate
had no effect on the position of the edges. The lengths of
the remaining gaps corresponded to the setup times Ts

(i→ j)

and Ts
(j→ i) of the laser, for the transitions from λi to λj and

from λj to λi respectively (fig. 4).
We measured a random selection of switching transitions
with different wavelength separations between λi and λj.
The setup times of these transitions ranged from 15 to 80
ns (fig. 5). The global setup time TS for a fully loaded
fabric has to be only slightly larger than the largest
individual setup time Ts

(i→ j). Although only a full
characterization of 80*79 = 6320 transitions can determine
this number with certainty, the measured subset indicated
that a setup time of 100 ns would be sufficient. This
would add 5% overhead to the switch fabric for a
switching period of 2 µs. The switching period is
compatible with high-capacity scheduling algorithms that
aggregate data packets to avoid scheduler bottlenecks /9/.

–19 –18 –17 –16 –15

–4

–5

–6

–7

–8

–9
–10

Received Power (dBm)

Lo
g

(B
E

R
)

–11

λ1 baseline
λ2 baseline
λ1+17 pol. ||
λ2+17 pol. ||
λ1+17 pol. || +16 pol.
λ2+17 pol. || +16 pol.

Figure 6. Bit-error-rate curves for the AWG.

We examined crosstalk by adding up to 32 signals to open
ports of the AWG in different combinations and by varying
the received optical power (fig. 6). Launching 16
copolarized and 16 orthogonally polarized channels of the
same wavelength into other ports of the AWG resulted in
less than 1.5 dB power penalty due to coherent crosstalk.
Note that the probability of having 16 equal wavelength
channels is less than 1.7*10-14 for random traffic. It could
be eliminated through a simple modification of the
scheduling algorithm. Incoherent crosstalk is not believed
to be a problem with the AWG out of band rejection of –35
dB, even if the fabric is fully loaded with 80 channels.
The measured results show that this optical switch fabric
is well suited to provide the basis for the next generation
of multi-terabit packet switches.

References
/1/ W. v. Parys, P. Arijs, and P. Demeester, OFC’00, ThO5-2,

p217
/2/ Y. Maeno et al., ECOC’99, p118
/3/ N. Yamanaka et al., IEICE Trans. Commun., vol. E83B,

p1488, 2000
/4/ X. Jiang X. P. Chen, and A. E. Willner, IEEE Photon.

Technol. Lett., vol. 10, p1638, 1998
/5/ P. B. Hansen, S. L. Danielsen, and K. E. Stubkjaer,

ECOC’98, p591
/6/ M. Smit, Int J. Optoelectron., vol. 12, p25, 1998
/7/ C. Dragone, IEEE Photon. Technol. Lett., vol. 3, p812, 1991
/8/ P. Bernasconi et al., IEEE J. Lighwave Technol., vol.18,

p985, 2000
/9/ K. Kar et al., HOTI 8, presentation 1.3, 2000

This project is supported in part by DARPA / NGI grant no.
F30602-00-2-0501.

71

Demonstration of a 1.2 Tb/s Optical Packet Switch
Fabric (32 * 40 Gb/s) based on 40 Gb/s Burst-Mode

Clock-Data-Recovery, Fast Tunable Lasers,
and a high-performance NxN AWG

J. Gripp (1), M. Duelk (1), J. Simsarian (1), S. Chandrasekhar (1), P. Bernasconi (1),
A. Bhardwaj (1), Y. Su (1), K. Sherman (1), L. Buhl (1), E. Laskowski (1),

M. Cappuzzo (1), L. Stulz (1), M. Zirngibl (1), O. Laznicka (2),
T. Link (3), R. Seitz (3), P. Mayer (3), and M. Berger (3)

(1) Bell-Laboratories, Lucent Technologies, 791 Holmdel-Keyport Rd, Holmdel, NJ, USA (mz@lucent.com)
(2) Internetworking Systems, Lucent Technologies, 55 Fairbanks Boulevard, Marlborough, MA, USA

 (3) Bell-Laboratories, Lucent Technologies, Thurn & Taxis Strasse 10, Nuremberg, Germany

Abstract: We demonstrate a 1.2 Tb/s optical packet switch fabric based on burst-mode clock-data-recovery at 40 Gb/s with
packet separations of up to 400 ns and lock times under 5 ns, fast wavelength switching between 32 channels in less than
46 ns, and a 42x42 AWG with a worst-case loss of 4.2 dB.

Optical switch fabrics are becoming increasingly popular for
cross-connects with more than 1 Tb/s throughput because of the
limited scalability of electrical backplanes. Packet switches have
traditionally lagged cross-connects in total throughput by one
order of magnitude, but they will also need optical fabrics to
achieve multiple Tb/s capacity /1,2/. Whereas cross-connects
work with millisecond switching times, packet switches require
nanoseconds. The introduction of 40 Gb/s services in the network
will intensify the push towards optical fabrics.
Recently, we demonstrated a multi-terabit optical packet switch
fabric based on commercially available components with 10 Gb/s
line speed /3/. Here, we report on significant improvements of
this technology, notably fast phase and clock recovery at 40 Gb/s,
improved tuning speed of the laser and a low-loss, low -crosstalk
AWG. Together, these results clearly demonstrate the feasibility
of a fast, 32 x 40 Gb/s strictly non-blocking switch fabric .

Tunable
Transmitter

AWG

Scheduler

Tunable
Transmitter

Tunable
Transmitter

Burst-Mode
Receiver

Burst-Mode
Receiver

Burst-Mode
Receiver

32
 In

pu
t L

in
e

C
ar

ds

32 O
utput Line C

ards

a)

b)

40G Mux

Tunable
Laser + OA

MZM

ScheduleIn
pu

t D
at

a
B

us

AWG 40G Burst-Mode
CDR/Demux

O
utput D

ata B
us

Figure 1. a) Switch architecture. b) One data path. OA:
optical amplifier. MZM: Mach-Zehnder modulator.

Figure 1a shows the architecture of the fabric, which is equivalent
to a strictly non-blocking NxN crossbar. The switching relies on
the well-known wavelength routing properties of array waveguide
gratings (AWGs) /4/. M input line cards send data to tunable
transmitters that in turn connect to the input ports of an NxN
AWG (N >= M). Burst-mode receivers on the output ports of the
AWG send the data to M output line cards. Figure 1b depicts one
optical data path. Incoming data packets modulate the amplified
light of a tunable laser. The packets then travel into one input port
of the AWG. By tuning the wavelength, the packets are routed

through the AWG to their individual output ports. At each output
port a receiver with burst-mode clock-data-recovery (CDR) and
an electrical Demux converts the optical packet back into an
electrical one and sends it to the output line card.
The switching time of this fabric is determined by the longest
tuning time of the lasers. Since no data can be transmitted during
tuning, the receivers have to tolerate this dead time between data
packets. In addition, the phase of the incoming bits changes from
packet to packet, thus requiring fast-phase-recovery on the
receiver side.
Following, we first describe the low -loss, low -cros stalk AWG
and the receiver performance that are important for the power
budget of the system. Then we show results on fast wavelength
tuning and burst-mode reception of 40 Gb/s data packets that
withstands dead times well above the tuning times of the lasers.
The passive 42x42 AWG has been fabricated using standard
silicon bench technology. The channels are spaced by 100 GHz
and the transmission passbands are Gaussian with a FWHM of
51 GHz. The AWG has no periodic frequency response. Among
NxN AWGs, our device shows unprecedented low -loss and low-
crosstalk /5,6/. The worst-case total insertion loss of the packaged
device is less than 4.2 dB, while PDL is less than 0.23 dB. The
polarization dependent frequency shift is less than 1.5 GHz. The
total crosstalk level has been measured to be less than -29 dB at
the center of the signal passband. This value does not change
within the whole passband once the contributions due to the
adjacent channels are suppressed. This suppression is easily
achieved via polarization multiplexing /3/. Figure 2 shows a
spectrum of the device.

Figure 2. Spectrum of the 42x42 port AWG. The worst
port-to-port loss is less than 4.2 dB (fully packaged).

72

The sensitivity of the receiver unit is determined by the
conversion gain of 30 V/W of the photo receiver and the single-
ended input sensitivity of the CDR/Demux of 25 mV. This
combination results in a back-to-back sensitivity of –4.7 dBm at a
BER of 10-9, as shown in fig. 3. The measurements were taken
with a pseudo random bit sequence (PRBS) with a word length of
231-1 bits. The spectral filtering caused by the AWG passband
results in 1 dB penalty. Per-channel optical amplification is
currently needed to overcome all the losses between the tunable
laser and the receiver. We anticipate however, that improvements
in the output power of the tunable laser and better sensitivities of
the photo receiver will eventually elim inate the need for optical
amplification.

-7 -6 -5 -4 -3 -2

11
10
9
8
7

6

5

4
 back-to-back
 through AWG

-
-
-
-

-

-

-

-

lo
g(

B
E

R
)

Received Power (dBm)
Figure 3. Receiver penalty due to the switch fabric.

The lasers are commercially available multi-section DBR laser s
with a tuning range of 40 nm and output power close to 0 dBm.
We have improved the high-speed driver boards described in /3/
by adding high-speed drivers at the outputs of the D/A converters.
We calibrated 32 channels with a spacing of 100 GHz and
measured the time it takes the lasers to switch from each channel
to every other channel. Figure 4 shows the resulting switching
times of one laser for all possible 32*31 = 992 combinations.
The laser switches in less than 46 ns, with the majority of the
channels switching between 10 and 30 ns. To our knowledge,
this is the smallest reported worst-case switching time for this
number of channels /3,7/.

0 10 20 30 40 50
0

10

20

30

40

50

60

N
um

be
r

of
 o

cu
rr

en
ce

s

Switch time (ns)
Figure 4. Switching time histogram for a laser with 32
calibrated channels with 100 GHz spacing. All channel
combinations switched in less than 46 ns.

The 40 Gb/s CDR/Demux is a single SiGe chip, preceded by a
limiting amplifier /8/. The CDR consists of a fast digital phase
detector and a PLL based on an internal VCO. The Demux
demultiplexes 40 Gb/s data into four 10 Gb/s tributaries. During
the dead time between data packets, phase and frequency of the
VCO drift and the PLL has to relock at the beginning of the next
data packet. Since the Demux will produce errors, as long as the
PLL is not fully locked, the data packets have to start with a
training pattern that is longer than the lock time of the CDR.
Figure 5 shows the structure of one time slot of the data stream
that we used to test the CDR performance.

00000000...
dead time

00110011...
training pattern

PRBS
packet payload

Td ns Tt ns 800 ns

Figure 5. Structure of one time slot used in the CDR test.

The time slot is constantly repeated and consists of three sections,
first a dead time, then a training pattern and then a payload. We
varied the length of the dead time Td between 50 ns and 100 µs,
and the length of the training pattern Tt between 25 ns and 200 ns.
The payload was an 800 ns long PRBS pattern with a word length
of 25-1 bits. The short word length was a result of limitations in
the programmability of the pattern generator. However, the
CDR/Demux is able to receive regular PRBS streams with a word
length of at least 231-1 bits without errors, as shown in fig. 3.

Figure 4. CDR/Demux behavior for Td=50 ns, Tt=25 ns.
a) Beginning of optical 40G data packets coming out of
the fabric. b) One 10G output of the Demux, showing
how the CDR locks to a tributary within 5 ns.

We tested the CDR/Demux with a subset of the setup show in fig.
1, consisting of two transmitters that alternate in sending packets
to one receiver. Trace a in fig. 4 shows the beginning of one data
packet with the end of a 50 ns dead time (first 2.5 divisions), a
25 ns training pattern and the beginning of the PRBS payload.
Trace b shows the behavior of one output of the CDR/Demux.
During the dead time the Demux generates zeros. During the
training pattern, the Demux output generates either a string of
zeros or a string of ones, depending on the tributary to which the
CDR locks. As long as the CDR is not locked, the output will
show sudden transitions between ones and zeros, visible during
the first 5 ns of the training pattern. The absence of trans itions
after the first 5 ns shows that the CDR has locked to one of the
tributaries. We saw that up to 400 ns dead time the CDR was
able to lock well within the 25 ns training period, even when
varying the phase difference between packets continuously
between 0 and 2π. Since the lasers can switch in less than 46 ns,
we have a wide design margin for the timing of the data packets
in the optical fabric. The data format is compatible with timing
requirements of current router architectures /9/.
The results presented in this paper show that wavelength
switching based optical packet fabrics with a line rate of 40 Gb/s
and multi-Tb/s throughput are clearly feasible for the next
generation of core packet switches.

References
/1/ N. McKeown, OFC’01, MN1-1
/2/ C. Guillemot et al., ECOC’98, p83
/3/ J. Gripp et al., ECOC’00, postdeadline paper 2.7
/4/ C. Dragone, IEEE Photon. Technol. Lett., vol. 3, p812, 1991
/5/ K. Okamoto et al., Electron. Lett., vol.33, p1865, 1997
/6/ P. Bernasconi et al., J. Lightwave Technol., vol.18, p985,

2000
/7/ O. Lavrova et al., ECOC’00, p23
/8/ M. Reinhold et al., ISSCC 2001 paper 5.6
/9/ K. Kar et al., HOTI 8, presentation 1.3, 2000

This project is supported in part by DARPA / NGI grant no.
F30602-00-2-0501.

b)

a)

73

4 x 4 DEMONSTRATION OF A 1.2 Tb/s (32 x 40 Gb/s)
OPTICAL SWITCH FABRIC FOR MULTI-Tb/s PACKET ROUTERS

J. Gripp (1), M. Duelk (1), J. Simsarian (1), P. Bernasconi (1), A. Bhardwaj (1), K. Sherman (1), K. Dreyer (1),
M. Zirngibl (1) and O. Laznicka (2)

(1) Lucent Technologies, Bell-Laboratories, 791 Holmdel-Keyport Rd, Holmdel, NJ, USA (mz@lucent.com)
(2) Lucent Technologies, Internetworking Systems, 1 Robbins Rd, Westford, MA, USA

Abstract We demonstrate error-free, asynchronous packet transmission and fast simultaneous switching on four
40 Gb/s ports in a 32-port optical switch fabric. The sensitivity under switching is better than -3 dBm for all four
burst-mode receivers.

Introduction
Optical switch fabrics will enable next-generation
multi-protocol switches and packet routers to reach
multi-Tb/s throughputs. As routers move from single-
shelf designs to multiple shelves or racks, optical
interconnects become unavoidable [1]. Optical
fabrics based on array waveguide gratings and fast
wavelength tuning offer the advantage of replacing
large active fabric cores [2] with an inexpensive,
passive optical device. This reduces space and
power requirements and permits a pay-as-you-grow
architecture [3].
We have previously reported asynchronous 40 Gb/s
packet transmission through such a fabric [4]. In this
paper we demonstrate simultaneous operation of four
40 Gb/s “line cards” (packet transmitters and burst-
mode receivers) in a fabric capable of 1.2 Tb/s
throughput (32 line cards x 40 Gb/s).

Setup
Figure 1 shows the setup of the optical fabric. Even
though we only equip four ports, all components of
the fabric are designed to support 32 ports. The
basic architecture has been described previously [4].
Four tunable transmitters connect to input ports of an

array waveguide grating (AWG). The four output
ports of the AWG connect to burst-mode receivers.
Each transmitter consists of a fast tunable laser
module (TL), a LiNbO3 Mach-Zehnder modulator
(MZM), and an Erbium doped fiber amplifier (OA).
The lasers are capable of tuning to 32 different
wavelength channels spaced by 100 GHz in less than
50 ns [5]. Each transmitter receives electrical 40
Gb/s data packets from a 16 x 2.5 Gb/s pattern
generator followed by a 16:1 multiplexer. To
generate four electrical data streams, we duplicate
the differential outputs of the Mux with delay flip-flops
(DFFs). By setting an appropriate modulator bias, we
obtain non-inverted data packets on all four
transmitters.
The AWG has a channel spacing of 100 GHz and
Gaussian passbands with a FWHM of 50 GHz. The
worst-case fiber-to-fiber insertion loss is less than 4.2
dB [6].
Each burst-mode receiver consists of a photoreceiver
and a 1:16 demultiplexer with fast clock-data recovery
(CDR). We connect one 2.5 Gb/s data output from
each Demux together with a recovered 1.25 GHz
clock to one channel of a 4-channel bit-error rate
testset (BERT).

Figure 1: Experimental setup. TL: tunable laser; AWG: array waveguide grating; DFF: delay flip-flop;
EA: electrical amplifier; OA: optical amplifier; MZM: Mach-Zehnder modulator; Rx: photo receiver;
CDR: clock-data recovery; BERT: bit-error-rate testset.

74

Jurgen Gripp

The pattern generator sends timing signals to a
computer that in turn provides the tunable lasers with
a switching schedule and trigger signals. We chose a
simple round-robin schedule to send data packets
from each transmitter to each receiver every 4
switching cycles. In addition, the pattern generator
sends a signal to the BERT to resynchronize to the
payload of every new packet.

Operation and Results
Figure 2 (a) shows the optical data packets, at one
output port of the AWG. Wavelength-dependent
power of the lasers and path-dependent loss through
the AWG cause power variations from packet to
packet. Trace (b) shows that the BERT synchronizes
successfully on all data packets (transition to high).

Time (10 s / div)

(a)

(b)

Figure 2: (a): Optical data packets after AWG.
(b): Synchronization output signal of the BERT.

For a PRBS pattern with 27-1 pattern length, the
BERT requires approximately 6000 bits for
synchronization. At a sampling rate of 1.25 Gb/s this
translates to roughly 5 µs. We therefore chose a
payload length of 10 µs so that bit-errors are
measured during 50% of the packet. We furthermore
program the pattern generator to precede the payload
with a 1 µs training pattern (00110011…) and to
follow it with a 100 ns dead-time during which all
lasers switch their wavelengths.

2.
5

G
b/

s
D

em
ux

 o
ut

pu
ts

Figure 3: One 2.5 Gb/s data output for each one
of the 1:16 Demultiplexers. (a): start of dead-
time. (b): end of dead-time. (c): CDR locks to
new data packet.

Figure 3 shows the electrical 2.5 Gb/s data outputs of
the 1:16 demultiplexers under burst-mode packet
reception. At point (a) the previous packet turns off.
At point (b), the new data packet arrives, starting with
the training pattern. The 00110011 sequence is
down-sampled either to constant 0 or constant 1.
After point (c), the CDR circuit has adjusted to the
phase of the new packet. The time for locking onto
the new packet is between 20 and 40 ns.
Figure 4 shows BER measurements comparing (a)
the back-to-back receiver sensitivity with (b) the
sensitivity under switching. For (a) we connect a
transmitter directly with each receiver and transmit
continuous PRBS data. For (b) we switch data
packets and measure the sensitivity for all 16 possible
combinations of four receivers at four output ports.
The received optical power is time averaged over the
power variations from packet to packet. We observe
a spread of 1.5 dB, between all receivers-port
combinations and a total penalty of about 5 dB. This
penalty is due to filtering in the AWG [4], power
variations between data packets (fig. 2), and the fact
that the optimum decision threshold varies from
packet to packet. In all cases the sensitivity (for BER
< 10-9) under switching is better than –3 dBm.

-12 -10 -8 -6 -4 -2 0
-10

-9

-8

-7

-6

-5

-4

lo
g(

BE
R

)

Received Optical Power (dBm)

(a) (b)

Figure 4: BER curves. (a): synchronous back-to-
back transmission. (b) asynchronous packet
switching.

Conclusions
We have demonstrated simultaneous packet
switching between four 40 Gb/s line cards in an
optical switch fabric capable of 1.2 Tb/s throughput.
The asynchronous burst-mode packet reception has a
sensitivity of better than –3 dBm for all combinations.
These results present significant progress towards
the demonstration of a fully-loaded terabit-class
optical switch fabric.

References
1 McKeown, OFC 2001, MN1-1
2 N. Sahri et al., OFC 2001, postdeadline paper 32
3 M. Duelk et al., Proceedings SPIE 4872, 2002
4 J. Gripp et al., ECOC’01, postdeadline paper A.1.7
5 J. Simsarian et al., ECOC’02, paper 3.3.6
6 P.Bernasconi et al, JLT, vol. 18, no. 7, p985, 2000

75

A WIDELY TUNABLE LASER TRANSMITTER WITH FAST, ACCURATE
SWITCHING BETWEEN ALL CHANNEL COMBINATIONS

J. E. Simsarian (1), A. Bhardwaj (1), K. Dreyer (1), J. Gripp (1), O. Laznicka (2), K. Sherman (1), Y. Su (1), C.
Webb (1), L. Zhang (1), and M. Zirngibl (1)

1 : Lucent Technologies, Bell Laboratories, 791 Holmdel-Keyport Rd., Holmdel, NJ, USA, jesses@lucent.com
2 : Internetworking Systems, Lucent Technologies, 1 Robbins Road, Westford, MA, USA

Abstract We demonstrate widely tunable laser transmitters that can access 32 ITU channels with 100 GHz
spacing and accurately switch between all channel combinations in less than 50 ns. The compact modules use
commercially available components. We also show the correlation of switching times to laser tuning currents.

Introduction
Fast tunable lasers, with nanosecond switching
speeds enable optical switch fabrics for multi-terabit/s
packet routers [1]. These switch fabrics use tunable
lasers to route data packets based on wavelength
switching. A critical efficiency requirement is that the
switching time must be short compared to the packet
length. Furthermore, the laser must switch between
any channel combination within a specified time.

There has been substantial prior work on tunable
lasers that demonstrated fast switching between
some channels [2-6]. However, data was not
reported for all of the possible switching
combinations. Also, the frequency accuracy of the
laser under switching conditions (a critical parameter
for deployment in an optical system) was not reported
in addition to the static accuracy.

Previously, we reported switching times of 50 ns for
all 32*31 = 992 possible combinations of a 32
channel system [1]. In this paper, we report results
on two different lasers, investigate the impact of the
driver circuit on the switching, and show the
correlation of the switching times and tuning currents.

Laser Module
We use a commercially available vertical Grating
assisted codirectional Coupler with rear Sampled
grating Reflector (GCSR) semiconductor laser, with a
tuning range of up to 40 nm [7]. The laser has four
separate sections: gain, coupler, reflector, and phase.
The gain section produces light emission, whereas
the coupler, reflector, and phase sections allow for
wavelength tuning. Due to manufacturing variations,
each laser must be calibrated to determine the tuning
currents for the ITU wavelengths.

We have designed and fabricated a compact printed
circuit board that controls the laser and enables the
fast wavelength switching. All of the components are
commercially available, and the butterfly-packaged
laser is directly mounted on the board. Figure 1
shows a block diagram of the control circuit. A Field
Programmable Gate Array (FPGA) stores the lookup

table containing the laser calibration. To set the laser
to a particular channel, the channel number is sent as
parallel data on the control bus to the FPGA. The
lookup table converts the channel number to three
tuning currents that undergo 10-bit digital to analog
(D/A) conversion. The analog currents are amplified
and sent to the tuning sections of the laser.

Control
Signals

FPGA
Lookup
Table

D/A
1

D/A
2

D/A
3

AMP
1

AMP
2

AMP
3

Gain

Laser

TEC
Control

Figure 1 Block diagram of the module electronics

Here we report the switching results from two lasers.
We generated the lookup table for laser #1 using a
calibration system and software that we developed.
We calibrated the static transmission wavelengths to
within ±1 GHz of 32 ITU channels from 1528.77 nm to
1553.33 nm. For laser #2, we used the calibration
table of tuning currents generated by the laser
manufacturer, which we transferred to the module.

Switching Results
We define the switching time as the interval between
when the wavelength leaves the source channel and
arrives at the destination channel to within a specified
accuracy. We measure the switching time for every
channel combination automatically using a tunable
filter and photodetector. The transmission
percentage through the filter gives the frequency
accuracy of the laser.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

N
um

be
r o

f o
cu

rre
nc

es

Switch time (ns)

Figure 2 Histogram of the switching times for laser #1,
using a high output-impedance current source for all
three tuning currents

76

A histogram of switching times for all 992 channel
combinations of laser #1 is plotted in Fig. 2. The
three amplifier sections of the circuit (see Fig. 1) are
high output-impedance current sources. The
accuracy for switching to the destination channel is
±10 GHz. All switching times are below 50 ns.

Figure
when a
impeda
the refl
Rout = 2

When
using
circuits
maximu
reflecto
dynam
current
cause l
low cur
to a low
20 Ω, t
ns (Fig
channe

1

1

2

2

3

To
 C

ha
nn

el
 N

um
be

r

Figure
gray sc
#2

We investigate the performance-limiting factors by
plotting the switching-time matrix for all channel
combinations in Fig. 4. The data set shown is the
same as for the histogram of Fig. 3b. A periodicity is
evident in the matrix as seen in the diagonal,
horizontal, and vertical lines of lower switching times
and isolated areas of higher switching times. The
periodicity mostly follows that of the reflector current.

The correlation of the switching times to the reflector
current can be extracted by further data processing.
We first calculate the average switching times to
every channel (row averages of the matrix) and from
every channel (column averages of the matrix). Then
we group the channels with similar reflector currents
and calculate the average switching time and reflector

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

N
um

be
r o

f o
cu

rre
nc

es

Switch time (ns)

0
0

10

20

30

40

50

60

N
um

be
r o

f o
cu

rre
nc

es

a)
b)
3 Histogram of the switching times for laser #2
) all three amplifier circuits are high-output
nce current sources b) the amplifier circuit for
ector section is a low-impedance source with
0 Ω

we measure the switching times for laser #2
the three high output-impedance amplifier
, we find longer switching times with a
m of 80 ns (Fig. 3a). This is due to the low
r currents for this particular laser. The high

ic resistance of the tuning section at low
 as well as the chip and parasitic capacitances
ong settling times when switching from high to
rents. By changing the reflector section driver
 output-impedance amplifier circuit with Rout =
he maximum switching time is reduced to 51
. 3b). The switching accuracy to the destination
l is ±12 GHz for this measurement.

0 5 10 15 20 25 30
0

5

0

5

0

5

0
ns

From Channel Number

0
7.0
14
21
28
34
41
48
50

4. The switching times (represented by the
ale) for all 992 channel combinations of laser

current for each group. The results are plotted in Fig.
5. It is evident that the longer switching times occur
when going from high to low reflector currents. This
indicates that the settling of the reflector current is
limiting the switching time. Optimization of the
amplifier circuit for the reflector may result in further
improvement.

15
17
19
21
23
25
27
29
31

2 3 4 5 6 7 8 9 10

Average Reflector Current (mA)

Switching From
Switching To

Figure 5 Plot showing the correlation between the
switching time and the reflector current

Summary

We demonstrate a high-volume manufacturable, fast-
tunable laser transmitter that switches between any
channel combination in less than 50 ns. The reflector
driver circuit currently limits the switching time. While
the steady-state accuracy of the transmitter is better
than ±1 GHz, under wavelength switching conditions,
the worst-case accuracy can be ±10 GHz.

References
1 J. Gripp et al., ECOC’01, post-deadline ThA4.8
2 C.-K. Chan et al., IEEE Photon. Technol. Lett., vol.

13, (2001), p. 729
3 O. Lavrova et al., ECOC’00, vol. 2, p. 169
4 Y. Fukashiro et al., OFC’00, WM43-1, p. 338
5 R. O’Dowd et al., IEEE J. Selected Topics in

Quantum Electron., vol. 7, (2001), p. 259
6 P. D. Biernacki et al., J. Lightwave Technol., vol.

17, (1999), p. 1222
7 P.-J. Rigole et al. IEEE Electron. Lett., vol. 32,

(1996), p. 2352
This project is supported in part by DARPA / NGI
grant no. F30602-00-2-0501.

10 20 30 40 50 60 70 80

Switch time (ns)

77

LONG-TERM WAVELENGTH SWITCHING MEASUREMENTS WITH
RANDOM SCHEDULES ON FAST TUNABLE LASERS

A. Bhardwaj, J. Gripp, J. E. Simsarian and M. Zirngibl
Lucent Technologies, Bell Laboratories, 791 Holmdel-Keyport Road, Holmdel, NJ 07733

ashishb@lucent.com

Abstract We demonstrate 26 hours of error-free wavelength switching in less than 50 ns between 32 ITU
channels with 100 GHz spacing using a GCSR laser. This corresponds to a packet-loss rate of less than 2*10-11.
We also examine the effect of different switching schedules, an important issue for commercial switch fabrics.

Introduction
Fast and widely tunable lasers will be an important
component in next-generation switch fabrics. In
combination with NxN array waveguide gratings and
nanosecond wavelength switching, they enable
packet routers with multi-terabit/s throughputs [1].
Other approaches include e.g. SOA-array based
fabrics [2], but they rely on components that are not
commercially available.
In previous work, we reported less than 50 ns
switching speed on all possible combinations of a 32-
channel system with ±10 GHz accuracy as well as
data transmission and switching of 1 µs data packets
carrying 40 Gb/s data [1]. Other groups have also
reported fast switching [3], but not long-term switching
measurements.
In this paper we demonstrate error-free continuous
switching over time periods of up to 26 hours.
Furthermore, we test the impact of different switching
schedules on the laser performance. Reliable long-
term operation under these varying conditions is
essential for commercial deployment.

Fast Tunable GCSR Laser
The laser used for these measurements is a
commercially available vertical Grating assisted co-
directional Coupler with Rear Sampled grating
Reflector (GCSR) semiconductor laser [4]. It is
digitally controlled through a circuit board consisting
of a Field Programmable Gate Array (FPGA), fast
digital-to-analog converters (D/As), and amplifiers [2].
The D/As provide currents to three tuning sections of
the laser to control the wavelength. Before
performing the switching measurements, we calibrate
the laser and program the FPGA to hold lookup tables
for 32 ITU channels, from 1528.77 nm (ch. 0) to
1553.33 nm (ch. 31), covering a range of 24.5 nm.

Tunable
Laser

Computer
with

Digital I/O

Pattern
Generator

SOA OF PD 6 dB
Coupler BERT

Trigger

C
lo

ckSchedule
and Trigger

Gating
Signal

AT

Φ
adjust

Figure 1: Setup. SOA: semiconductor optical
amplifier, OF: optical bandpass filter, AT: attenuator,
PD: photodetector, BERT: bit-error rate detector.

Setup
Figure 1 shows the switching setup. A computer with
a digital I/O card applies a periodic switching
schedule together with a trigger to the tunable laser.
The light from the laser is amplified using a
Semiconductor Optical Amplifier (SOA) and then
passes through a tunable optical bandpass filter with
a full width half maximum of 0.2 nm. We arbitrarily
select the ITU wavelength 1544.53 nm (ch. 20) as the
center wavelength of the filter. The light transmitted
by the filter is attenuated and photodetected with 1
GHz bandwith. A pattern generator provides the
overall timing for the experiment. It triggers the
computer to change the laser wavelength once every
1 µs, clocks the BERT at 40 MHz, and gates the
output of the photodetector. The BERT then samples
the sum of the photodetector and gating signals (see
fig. 2 (c)). When the gating signal is high, the BERT
measures a 1-bit, regardless of the detected optical
power. If the laser doesn’t switch within the allotted
time, the BERT counts at least one error.

(a)

(d)

(c)

(b)

(1) (2)

1µs

50 ns

80%

Figure 2: Timing diagram. (a) Signal from the photo
detector (b) gating signal (c) Signal at BERT input, the
dotted line shows the decision threshold (d) clock
signal. Arrow (1): BERT measures a 1-bit regardless
of jitter in the laser turn-on. Arrow (2): If the laser
switches too slowly the BERT counts at least one
error.

Switching Schedules
We generate schedules that switch the laser
continuously once every microsecond between
channel 20 and one of the 31 other channels. In the
following, we employ two different schedules. The

78

Jurgen Gripp

first is a linear schedule which cycles through the 31
other channels, resulting in the following pattern:
0,20,1,20,2,20…31,20,0,20… The second is a
random schedule in which the other channels are
randomly chosen for a long sequence of 20,000 µs.
With these schedules we can examine if the switching
history impacts the switching behavior of the laser.

Operation
Figure 2 shows the timing of the signals used in the
switching measurements. The photodetector
measures approximately a rectangular signal with 2
µs periodicity, shown as trace (a). Every time the
laser switches to channel 20, the signal goes from a
low to a high value. The BERT is programmed to
expect a string of N 0-bits followed by a string of N 1-
bits, where N is the number of clock cycles per
packet, 40 in our case. We set the threshold to 80%
of the maximum laser power. This level is reached as
soon as the laser wavelength approaches channel 20
to within ±8 GHz. If the laser doesn’t switch fast
enough, the BERT will measure a 0-bit where a 1-bit
is expected and count an error. The gating signal
ensures that the BERT does not count errors during
the switching time window. The phase of the clock
signal determines how fast the laser has to switch to
avoid an error count by the BERT. Since a slow laser
transition will cause at least one error to be counted
per 2 µs, we can calculate an upper limit for the
packet-loss rate (PLR) to be PLR ≤ 2 * N * BER,
where BER is the bit-error rate. As the name
indicates, the packet-loss rate describes the
probability of losing data packets due to slow laser
transitions. We change the clock phase and record
the PLR as a function of maximum switching time.

Figure 3: Random-schedule switch dia
traces for transitions from the 31 oth
channel 20 (1544.53 nm) are visibl
shows the path on which the PLR c
obtained.

Results
Figure 3 shows a switch diagram obt

random schedule. It shows how the laser switches to
channel 20. Discrete traces are visible, indicating that
the process of switching from the other channels to
channel 20 is highly repeatable. The equivalent
switch diagram for the linear schedule looks identical
to figure 3.
Figure 4 shows packet-loss rate curves for the linear
and random schedules. We varied the clock phase
and thus adjusted the maximum allowed switching
time between 35 and 50 ns. By doing so, we
effectively sampled fig. 3 along the arrow. Above 46
ns, the laser generated no errors. The choice of
schedule caused a penalty of well under 1 ns. We
ran the measurement for 26 hours with a switching
time window of 50 ns and counted no errors. This
corresponds to a PLR below 2*10-11.

35 40 45 50
1211
10

9
8
7
6
5
4

3

2

1

-lo
g

(
P

ac
ke

t-
Lo

ss
 R

at
e

)

Sw itching T im e W indow (ns)

 L inear
 R andom

Figure 4: Packet-Loss Rate curves. The arrow
corresponds to 26 hours of error- free operation.

Conclusion
We have demonstrated long-term switching of a fast

O
pt

ic
al

 P
ow

er
 (a

. u
.)

0

s

)

channel 2
tunable laser. We presented a packet-loss rate curve
for switching to one particular ITU channel from the
31 other channels. It shows that a time window of 50
ns provides ample margin for error-free wavelength
switching. Full laser characterization requires 32
such curves, one for each destination channel. This
will be performed in the near future. However, the
results clearly indicate that fast tunable lasers are a
reliable, enabling technology for next-generation
switch fabrics.
other channel
Time (5 ns/div
gram. Discrete
er channels to
e. The arrow
urve of fig 4 is

ained using the

References
1 J. Gripp et al., ECOC’01, ThA4.8
2 D. Chiaroni et al., ECOC’01, ThA4.11
3 O. Lavrova et al., ECOC’00, vol. 2, p. 169
4 P.-J. Rigole et al., IEEE Electron. Lett., vol. 32,

(1996), p. 2352

This project is supported in part by DARPA / NGI
grant no. F30602-00-2-0501.

79

16-CHANNEL DIGITALLY TUNABLE PACKET SWITCHING
TRANSMITTER WITH SUB-NANOSECOND SWITCHING TIME

M. Kauer (1), M. Girault (2), J. Leuthold (1), J. Honthaas (2), O.Pellegri (2), C.Goullancourt (2), and M. Zirngibl (1)
1 : Bell Laboratories, Lucent Technologies, 791 Holmdel-Keyport Road, Holmdel, NJ 07733, USA,

mkauer@lucent.com
2 : NetTest, 45 avenue Jean Jaures, BP 81, 78344 Les Clayes sous Bois, France, marc.girault@nettest.com

Abstract We present a 16-channel 100 GHz-spacing digitally tunable packet switching transmitter based on an
external-cavity laser. The transmitter can switch within 0.8 ns between its channels at 0 dBm output power and
<0.7 dB penalty.

Introduction
Tunable lasers are considered important components
for next generation DWDM networks. In particular,
they enable fast optical switch fabrics for packet
routers that route traffic on a packet-by-packet basis
[1]. Grating Assisted Coupler and Reflector (GCSR)
lasers that can be switched in less than 50 ns [1] and
less than 5 ns [2] have been demonstrated recently.
These lasers are tuned by current injection and hence
it is difficult to maintain wavelength accuracy if one
wants to reduce the switching time below a few
nanoseconds. Here, we demonstrate a packet
switching transmitter that can switch between its
channels with 0.8 ns guard time and less than 0.7 dB
penalty.

External-cavity laser
The packet switching transmitter is based on a novel
external-cavity laser design [3]. The external-cavity
laser uses a 16-strip laser diode chip and a stationary
diffraction grating (see Fig. 1). Its emission

Figure 1: Schematic of the laser cavity.

wavelength depends on the position of the laser diode
waveguide with respect to the grating, and thus can
be switched by selecting the desired laser diode on
the chip. The grating period, laser diode separation
and average incidence angle α0 are chosen such that
the channels are on the 100 GHz ITU-grid (see Fig. 2,
the currents for 0 dBm output power are between 45
and 79 mA). This laser has the characteristic

Figure 2: Superimposed spectra of all 16 channels
with output power adjusted to 0 dBm.

advantages of external-cavity lasers, such as high
output power (>7 dBm), high side-mode suppression
ratio (>40 dB) and inherently narrow linewidth (<300
kHz) [3]. In addition to its excellent optical properties,
the novel design offers three important benefits.
Whereas conventional external-cavity lasers use
rotating or translating gratings as the tuning mecha-
nism, this laser does not contain any moving parts.
This increases the long-term reliability of the laser
and makes a wavelength locker unnecessary as the
emission wavelengths are determined by the
geometric properties of the cavity. Most importantly,
the design of this laser enables very rapid channel
switching, as there is no trade-off between tuning
accuracy and switching speed.

Experimental scheme
The experimental scheme consists of the transmitter,
a demultiplexer and a receiver (see Fig. 3). We switch
the laser between combinations of two wavelengths
with a period of 3.2 µs. The individual laser diode
strips are driven by programmable pulse generators
and DC-biased with a bias tee. We adjusted the
switching current and the DC bias such as to obtain 0
dBm output power per channel during the on-period
and an on/off-ratio larger than 12 dB. The DC-bias
currents were just above threshold, between 33 and
38 mA. The laser output signal is externally

80

Figure 3: Experimental scheme.

modulated at 10 Gb/s by a programmed pseudo-
random bit sequence (PRBS of 223-1, limited by
pattern generator memory). The PRBS is synchro-
nized with the switching of the laser. After the laser
we use a demultiplexer to select one wavelength for
bit-error rate (BER) measurements. In order to
measure the BER we apply a gating signal to the
BER tester, thus taking into account only the data
within the gating window. The gating window could be
shifted with respect to the wavelength packets and
also shortened to allow for an adjustable guard time
between the two wavelengths. The timing jitter for the
drive pulses and the gating window signal was less
than 100 ps.

Results and discussion
In order to determine the switching time we measure
for each wavelength the maximum gating time with
which error-free transmission can be achieved.

Figure 4: BER results for the switched signals with 0.8
ns guard time compared to the cw back-to-back
measurement.

From the measured gating times we deduce the
guard time and find that error-free transmission is
possible with a guard time of 0.8 ns between the
wavelength packets. Figure 4 shows the correspond-

ing BER curves for four wavelength pairs across the
laser tuning range. The penalty for a BER of 10-9 is
found to be less than 0.7 dB. The bit sequences and
the gating window during switching for one particular
wavelength pair are shown in Fig. 5. During the
transition, the signal within the gating window from
the intended channel is at least 4.8 dB larger than the
signal from the unwanted channel.

Figure 5: Bit sequence while switching from channel 8
to channel 16 and corresponding gating window.

We can achieve zero guard time by turning on a new
channel while the old channel is still on, i.e. by
overlapping the packets. We set the gating windows
such that the guard time between the packets is zero
and then adjust the laser drive pulses so as to
achieve error-free operation. An overlap of 5 ns or
less is sufficient to achieve zero guard time with a
power penalty of less than 3 dB for a BER of 10-9.
Cross-talk between the overlapped signals affects
their quality and leads to the larger power penalty.

Conclusions
In conclusion, we have demonstrated a digitally
tunable packet switching transmitter based on a novel
external-cavity laser design without moving parts. It
can switch between wavelength packets with a guard
time of 0.8 ns at 0 dBm output power and less than
0.7 dB penalty. This is significantly better than what is
possible with other tunable lasers, including those
based on current-injection.

We thank P. Fowler, C. Jones, J. Gripp, J. Simsarian,
P. Bernasconi, A. Bhardwaj, M. Dülk, and K.
Sherman.

References
1 J. Gripp et al., ECOC 2001, ThA4.8 (post-deadline)
2 O. A. Lavrova et al., ECOC 2000, Tu 6.3.5
3 G. Souhaité et al., ECOC 2001, Tu.F.3.2

81

Combining Circuit and Packet Switching in Next Generation Internet Backbone
Networks

Stewart D. Personick
Drexel University

This work is supported by AFRL/DARPA agreement No. F30602-00-2-0501

Traditional digital telephone networks utilize time-division-multiplex circuit switching to
share physical network links among multiple telephone connections. In addition, circuit
switching, in the form of re-arrangable time-division-multiplexed paths, is commonly
utilized to provide dedicated (but re-arrangable via network management functionality)
capacity between pairs of router ports in packet networks. When one employs byte-by-
byte time division multiplexing (e.g., as in SONET), to create circuit switched paths
between pairs of router ports, one can achieve the benefits of deterministic (as opposed to
statistical) sharing of the capacity of the fibers or wavelengths that make up the physical
interconnection fabric of a network. But this comes at the expense of deploying and
operating both conventional byte-by-byte time division multiplexing equipment, and
packet switching equipment; i.e., two, overlaid networks.

It is possible to combine statistical packet switching and circuit switching in the same
switching mechanism. For example, the IEEE 1394 “Firewire” standard allows a portion
of the capacity of a link to be allocated for circuit switched (pre-reserved) traffic, and the
remaining capacity to be allocated for packet switched (unreserved) traffic. The Fiber
Distributed Data Interface (FDDI) standard allows for the construction of a ring-shaped
local area network in which a portion of the capacity of the ring is allocated for
“isochronous” (circuit switched) traffic, and the remainder of the capacity of the ring is
allocated to “asynchronous” (packet switched) traffic.

In this paper we describe a methodology for designing and implementing a wide area
telecommunications network with a generalized physical topology… i.e., not limited to a
ring or other type of typical local area network physical topology… that combines
deterministic circuit switching of packets or bursts of telecommunications traffic with
statistical packet or burst switching of telecommunications traffic, in a flexible manner,
that achieves the guaranteed throughput and fixed delays associated with circuit
switching, while still obtaining the statistical multiplexing and other benefits of packet
switching. Since a common packet or burst format is used for both deterministic and
statistical switching, one can avoid the need to deploy and operate two, overlaid physical
infrastructures.

An illustrative example of this methodology is shown in Figure 1. In this example, there
are what we are calling here (i.e., this is not standard terminology) “transitional”
switching nodes and “core” switching nodes. Not shown in Figure 1 are: the traditional
circuit and packet switched networks that route traffic to and from the transitional
switching nodes, and thus use the network of Figure 1 as a backbone from transporting
their traffic. The core switching nodes and the associated links provide connectivity
between transitional switching nodes for carrying telecommunications traffic. The

82

telecommunications traffic traveling between transitional switching nodes consists of
either fixed length (number of bytes) packets, or fixed length bursts of consecutive bytes
that may include one or more variable length packets, plus filler bytes that fill up
unneeded space in a burst. Variable-length packets or bursts that arrive at transitional
nodes from other networks (not shown in Figure 1) can be repackaged, by the transitional
nodes, into fixed length packets or bursts by using a combination of: segmentation,
stuffing, and tunneling methods.

Fixed length packets or fixed length bursts being transported between transitional nodes
are interleaved in time as shown in Figure 2. A cycle (equivalent to a “frame” in
conventional byte-by-byte time division multiplexing) represents an interval of time that
can accommodate a sequence of fixed length packets or a sequence of fixed length bursts.
Each fixed length packet or fixed length burst occupies one of N time slots in the cycle.
The cycle repeats at a fixed periodic rate: R (cycles per second); and traffic associated
with a source-destination pair can be assigned some number of time slots per cycle. For
illustration, we can assume that a cycle accommodates 64 fixed length packets or fixed
length bursts in time slots numbered 0,1,2,….63. However, the number of time slots in a
cycle is a design parameter that can be selected, as desired, for specific network
implementations. Traffic that is assigned two time slots out of the total number of time
slots in a cycle would have two time slots per cycle (not just two time slots in one cycle)
of capacity allocated to it for as long as those time slots are assigned to that traffic.

If a transitional switching node wishes to establish circuit switched connectivity to
another transitional switching node, it signals (sends a circuit set-up request) to the core
network using a signaling protocol. The network contains a network management
capability. It can be implemented as a centralized network management system that
manages the switching nodes and the assignment of time slots on core network links, or it
can be implemented as a distributed network management system, with portions of its
software-based functionality distributed among the switching nodes, or it can be
implemented as a combination of these. The network management system of the network
maintains network management data regarding the availability of time slots (i.e., time
slots that have not been previously reserved) on the links of the core network. If a
sufficient number of time slots are available on a sequence of links between the source
transitional switching node and the destination transitional switching node, to provide the
desired circuit capacity between those transitional switching nodes, then those time slots
are reserved on those links for this new circuit switched connection. If the network
management system cannot find a sufficient number of time slots on a set of links leading
from the source to the destination, then the request to set up the new circuit switched
connection is denied.

The circuits that are established between ports on transitional switching nodes can be
used to carry packed switched traffic between those nodes, without any contention (i.e.,
no statistical multiplexing) in the core network that provides these circuits.

Each core switching node must manage the contention that occurs when two or more
incoming links contain traffic for a given outgoing link. Even though there are enough

83

time slots per cycle on the outgoing link to accommodate all of the fixed length packets
or fixed length bursts that have reserved capacity on that outgoing link, the incoming
fixed length packets or fixed length bursts will generally need to be assigned to different
time slot numbers on the outgoing link, than the time slot numbers they occupy on the
incoming links. For example two fixed length packets on incoming links #1 and #5,
respectively might both arrive in time slot 7 of their respective cycles. To direct both of
these fixed length packets to output link #12, it will be necessary to move at least one of
these incoming packets to a different time slot number, since they cannot both occupy the
same time slot on the outgoing link. The subsystems that perform this rearrangement of
time slots are called time slot interchangers (see Figure 3).

Using properly designed time slot interchangers, one can assign unused time slots in any
links that are needed to establish new end-to-end connections, regardless of what existing
connections are established.

The concept of assigning fixed length packets or fixed length bursts to time slots in a
cycle is analogous to the process of assigning eight-bit bytes to reserved time slots in a
“frame” in conventional time division switching and multiplexing. Much of the theory of
conventional time division switching and multiplexing can be reused to create
methodologies to perform such functions as setting up end-to-end connections (finding
and reserving time slots) and time slot interchanging.

In addition to reserving time slots within the cycles of series of links to establish circuit
switched end-to-end connections for transporting fixed length packets or fixed length
bursts, one can also use time slots that have not been reserved within a cycle on a link, or
that have been reserved, but which are not used to carry the associated circuit switched
traffic during a single cycle, for packet-switched traffic (see Figure 4). Note that packet
switched traffic, consisting of fixed length packets or fixed length bursts, must be
buffered (temporarily stored) at each core switching node, while it awaits an unreserved
or reserved, but not used time slot in a cycle of a suitable outgoing link. The destination
address or some form of label is used to route fixed length packets or fixed length bursts
that travel through the network as packet switched traffic using packet switching
protocols.

84

Figure 1

SN=Switching Node

Transitional SN

Core SN

Core SN

Core SN
Link Link

Link

Link

Transitional SN
Link

Network Controller
(Network Management

Software)

Switching Node

Cycle [1/R seconds]

Time Slot [accommodates 1 fixed
length packet or burst]

Switching Node

Figure 2

Link

85

Switching node

Cycle
(Frame)

Time Slot

Switching Node

TSI TSI

Figure 3 Time Slot Interchanger (TSI)

Fixed length packet or burst

Link Link

TSITSI

Router
Packet switched traffic

Figure 4 Combined Deterministic and Statistical
Switching

Separate circuit switched and packet
switched traffic Combine circuit switched

and packet switched traffic

86

Congestion Control, Differentiated Services,

and Efficient Capacity Management

Through a Novel Pricing Strategy 1

Adam J. O’Donnell, Harish Sethu ∗
Department of Electrical and Computer Engineering

Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104.

Abstract

Pricing is an effective tool to control congestion and achieve QoS provisioning for
multiple differentiated levels of service. In this paper, we propose a practical, flexi-
ble and computationally simple pricing strategy that can achieve QoS provisioning
in Differentiated Services networks with multiple priority classes operating in an
efficient economic market, while also maintaining stable transmission rates from
end-users. In contrast to previous work, in which dynamic pricing strategies are
based on the state of congestion alone, our strategy adds a separate price com-
ponent for the preferential service received by a packet. This permits an efficient
market for network resources and services, with the price charged being dependent
upon both the cost of the resources and the dynamically changing demand for it.
In addition, this automatically enforces efficient capacity management in the al-
location of resources among the various service classes, leading to a user-centric
approach where a user is not charged a higher price unless preferential service is
actually delivered. Our analytical and simulation results demonstrate that, with the
combination of user adaptation and our pricing strategy, differentiated services can
be achieved with stable transmission rates. This paper concludes with a discussion
of various operational issues associated with actual deployment of such a pricing
strategy.

Key words: Internet economics, Differentiated Services (DiffServ), pricing,
congestion control, Quality of Service (QoS), capacity management

∗ Corresponding author.
Email addresses: adam@ece.drexel.edu (Adam J. O’Donnell),

sethu@ece.drexel.edu (Harish Sethu).
1 This work was supported in part by Drexel University’s ECE Colehower En-
dowed Fellowship, United States National Science Foundation Graduate Research
Fellowship, and United States Air Force Contract F30602-00-2-0501. A preliminary

Preprint submitted to Elsevier Science 4 November 2002

87

1 Introduction

The network resources in the Internet are dynamically shared among a large
number of users, posing a significant challenge in the guaranteed provisioning
of quality-of-service (QoS) to individual users. During the last several years,
QoS issues in the Internet have attracted significant research interest as well as
commercial investments. One of the ways to achieve QoS guarantees on a per-
flow basis is to make a priori reservations of buffer and bandwidth resources in
the network. This approach is used in the Integrated Services (IntServ) archi-
tecture [4], which relies upon a reservation setup protocol such as RSVP [26].
The per-flow management required at the routers, however, calls into ques-
tion the scalability of this approach. The Differentiated Services architecture
(DiffServ) [3] is an alternate method that achieves improved scalability by
aggregating data packets into a small number of service classes and defining
router behaviors expected by packets belonging to each of these classes.

DiffServ allows up to 64 different service classes that serve only to define the
treatment a packet will receive in relation to other packets, but do not pro-
vide absolute guarantees on performance. In the absence of guarantees, as in
IntServ, the role of capacity planning for traffic from various classes of service
becomes critical to achieving satisfactory service. These bandwidth contracts,
referred to as service-level agreements (SLAs), can provide reasonable guar-
antees only when established over long time scales [18]. The user demands
for various levels of service can change rapidly due to a variety of reasons;
participation in SLAs between providers, therefore, is not likely to lead to an
efficient use of network resources. Mechanisms for capacity planning and con-
gestion control through dynamic pricing, however, can be significantly more
efficient and also more responsive to changes in, and the demand for, the net-
work resources. This paper explores a practical, flexible and computationally
simple user-centric pricing strategy that can achieve QoS provisioning in Diff-
Serv networks with multiple priority classes operating in an efficient economic
market, while also maintaining stable transmission rates from end-users.

1.1 Related Work and Motivation

Over the last several years, a number of research proposals have advocated
the creation of an economic market for congestion control and differentiated
services. One of the simplest means of achieving QoS differentiation is through
Paris Metro Pricing [20], which assigns fixed prices for traffic from different ser-
vice classes and logically partitions the network into separate channels, each

version of this paper appeared in Proceedings of the IEEE International Conference
on Communications, April-May 2002, New York, NY, pp. 986–990.

88

with its own allocated bandwidth. All packets traveling through the same
channel receive the same level of best-effort service; however, channels with
higher prices provide better service because they attract less traffic. Such a
scheme leads to an inefficient utilization of the network resources since band-
width allocated to the higher-price channels may go unused.

An alternate method, which does not pre-allocate bandwidth to different ser-
vice classes, is based on dividing traffic into multiple priority classes and using
a different, but fixed, price associated with each service class [6, 17]. Packets
belonging to higher-priority classes are given greater forwarding priority at
the intermediate routers, thus leading to QoS differentiation. Such a scheme is
rendered more efficient by the addition of a congestion-dependent component
to the price, allowing for a more competitive price to be offered. One such
scheme is studied in [1], where the pricing changes at a time-scale suitable
for typical human response times. In this system, a technical (non-economic)
method of congestion control is required at shorter time-scales. The absence of
an economic congestion control mechanism at short time-scales, however, may
expose the system to abuse by software application vendors or sophisticated
users.

Another scheme utilizing congestion-dependent pricing is studied in [22], where
the charges are determined on a per-call basis and are assessed at the time the
call is admitted. However, rapid variations in the demand within the duration
of one call, typical of Internet traffic today, render such an approach less

the price for each service class depends on the average demand for that service
class and is negotiated for short intervals of time. This requires a resource
negotiation protocol so that the network can commit resources for these short
durations. However, a user may incorrectly anticipate his/her requirements
and request a resource commitment but not actually use it. Therefore, such
reservation-based approaches, even for short durations, can lead to higher
charges for users and inefficient use of the network. In a somewhat related
pricing strategy [7], resources may be provisioned per service class over the
long term and then priced based on user demand over the short term. This
can lead to improved utilization of the network resources over the short term
as users dynamically change transmission rates and/or switch service classes.
Such provisioning may be engineered to maximize profits as shown in [7];
however, over the long term, static allocation of bandwidth among the service
classes will lead to a less efficient market with sub-optimal long-term pricing
and resource utilization.

An altogether different principle is used in another set of approaches based
on the “smart-market” proposal by MacKie-Mason and Varian [15], where
packets are each marked with a bid price that reflects the need of the sending
user for the packet to be transmitted. The router admits packets whose bid

89

price is greater than a certain cutoff amount, which is in turn a function of
the congestion state of the router. The originator of the packet is charged the
lowest bid of all the packets admitted to the router during the time period.
Gibbens and Kelly [9] also describe a price-based feedback system for conges-
tion control where packets utilizing a congested router’s services are marked
as such and end-users are assessed a charge based upon the number of packets
thus marked. This principle is extended in [2] and other related works, where a
price variable maintained at each router represents the measure of congestion
and is used to determine the probability with which a packet is marked at the
router. The marking probability at each router is exponential in the current
price, ensuring that the end-to-end probability that a packet is marked before
it reaches its destination accurately captures the congestion along the path of
the packet. As in [9], users may be charged based on the number of packets
that are marked. A further extension of such a pricing scheme, which uses
more than one bit in the packet for the price feedback, is discussed in [8]. In
this pricing strategy, a value representing a price is assigned to each packet as
it enters the router. This price is an expression of the social cost incurred by
other users due to congestion. Users adapt their transmission rates based on
the recent history of prices marked on the packets.

All of the above mentioned pricing schemes provide for economic regulation
of individual bandwidth consumption but do not facilitate QoS provisioning
for multiple levels of priority service. They all rely upon an FCFS discipline
for packet scheduling at the routers and therefore, do not provide a means for
one customer to obtain priority service over another. For example, a customer
requiring very low delays but not much bandwidth cannot obtain the desired
service when pricing schemes are based on the bandwidth consumed but not
on the scheduling services rendered.

A pricing scheme that seeks to provide multiple levels of service, with price
computations based on both the flow rates and the waiting times, is discussed
in [11]. The computation of prices in this strategy is done periodically using
an iterative approach in which the history of flow rates and waiting times
determines current price estimates. In this scheme, a customer evaluates the
current advertised price information, and then chooses how to transmit its
packets (such as priority level and flow rate). Thus, the prices charged to a
customer may not reflect the true cost of the service provided since the prices
are based on the predicted level of service for each priority class as opposed
to the actual service rendered. For example, the charge for a high-priority
class may be high even if its packets do not actually receive priority service
(such as when there is no lower priority traffic). As a related consequence, this
scheme does not provide a framework to define the relationships between the
different prices for the priority levels based on current usage patterns within
each priority level. Thus, the prices set for the different priority levels and
the user actions based on these prices will not represent an efficient market

90

and therefore, may not lead to efficient management of the available capacity
in the network. Additionally, the scheme specifies that the nodes which price
the packet also perform a running average of the state of the network us-
age. Besides imposing complexity on the network core instead of the network
edges, this limits the amount of information available to the user regarding
the burstiness of the current network utilization. We feel that such averaging
should be performed at the end-systems to permit the user to determine its
own method of adapting to the fluctuations in the prices.

1.2 Contributions

In this paper, we propose a practical, flexible and computationally simple
pricing strategy that can achieve QoS provisioning in Differentiated Services
networks with multiple priority classes while maintaining stable transmission
rates from end-users. Our goal in this paper is to improve efficiency of network
resource usage and reduce router processing overheads by avoiding resource
reservations and static allocations in the network for QoS provisioning. Most
importantly, in contrast to previous work in pricing the Internet, our goal is
to achieve efficiency in market economics by considering the actual demand
for each resource in the determination of prices charged for the use of the
resource. For example, a high-priority packet that arrives at a router should
not be charged a higher price if there are no lower-priority packets in the
router over which it receives preferential service.

This paper borrows the framework described in [8], but uses an altered pricing
strategy to achieve differentiated services through dynamic pricing based on
the principles stated above. With simple queuing and scheduling policies in the
routers, our pricing strategy is able to provide for varying levels of scheduling
priority, and is ideally suitable for DiffServ networks. The strategy, which
allows for a flexible and appropriate gradation in the pricing for different
priority classes, involves charging packets based on,

(1) The bandwidth consumed and the instantaneous demand for the band-
width.

(2) The preferential service actually received by the packet in the allocation
of the bandwidth as well as the buffer resources.

The pricing strategy does not assume a prior contract between the network
and the customer for a certain QoS/price combination, but instead relies on
user adaptation of the transmission rate and/or the service class based on
the price feedback it receives for each packet. In this paper, when we refer to
the “user”, we do not necessarily mean a human end-user. The user may be
a human end-user, an end-user application software, a service provider or a

91

border router in a DiffServ domain.

A number of other approaches in the research literature propose pricing strate-
gies that either maximize revenue or maximize social welfare. For reasons de-
scribed in [23], our approach does not follow this optimality paradigm and
seeks to address the more practical and architectural issues, while creating a
pricing strategy based on an efficient market. In addition, one may argue that
our strategy uses a stronger user-centric approach since the price charged for
each transmitted packet is based on the preferential service actually rendered
to the packet and not based on the service expected by the user prior to the
transmission of the packet. Such a scheme also leads to a more efficient uti-
lization of the network since it avoids static allocation of network resources
either on a per-flow basis or on a per-class basis.

Our strategy is computationally simple and practical for easy implementation
in switches and routers, and is scalable with an O(1) complexity with respect
to the number of flows. The queue architecture within routers assumed by our
pricing and scheduling strategy is similar to those in DiffServ-capable routers.
This paper does not address the various logistical and philosophical objections
that may exist to usage-sensitive pricing of network services. A treatment of
these topics may be found in [14].

1.3 Organization

The rest of this paper is organized as follows: Section 2 describes the router
and the system model used in our analysis. This section also describes the as-
sumptions, requirements and goals of this work. Section 3 describes our pricing
strategy and the rationale behind it. This section also presents a pseudo-code
implementation of the pricing strategy. Section 4 presents a queuing-theoretic
analysis of the stability of the pricing function through obtaining the buffer
distribution that results from use of such a pricing function. Section 5 presents
simulation-based results which further demonstrate that, with user adaptation
in combination with our pricing strategy, differentiated services and stable
transmission rates can be achieved. Section 6 concludes the paper with a dis-
cussion of various operational issues associated with actual deployment of the
pricing strategy.

2 System Model: Assumptions and Goals

Our system model consists of a network of packet-switched routers, connecting
together a finite number of end-systems, or hosts. Each host is a source and/or

92

a sink of data packets. Every data packet carries a field in its control header
which represents the price that will be charged for its transmission. Each
router in the path of a packet adds its charge to this field in the packet.
When the packet reaches its destination host, this price field is copied into
its acknowledgment and returned back to the sending host. The price field
in the packets may be best accommodated either as a separate IPv4 option
or as a new sub-header to be encapsulated in an IPv4 packet. The user may
employ the recent history of prices charged to dynamically adapt and adjust
its sending rate or select a different class of service. Our goals in developing a
pricing strategy are as follows.

• Pricing based on cost and demand: The architecture should ensure that
the price of any given network resource (bandwidth, buffer or preferential
service) depends only on the current demand for the resource and the cost
to the provider. For example, in the absence of packets from lower priority
classes, the demand for preferential service does not exist, and the price
charged to a high-priority packet should be no more than that charged to a
lower priority packet that encounters a similar router state. Pricing based
on cost and demand leads to a more efficient market with more competitive
prices.

• Scalability and Computational Simplicity: The pricing strategy should be
simple and easily implementable in switches and routers. In the spirit of
the original motivation behind DiffServ, there should be no per-flow man-
agement at the routers. An O(1) computational complexity, with respect to
both the number of flows and the number of packets buffered in the router,
is desirable of all pricing and scheduling algorithms implemented at each
router.

• Dynamic in-session user adaptation: Internet traffic characteristics display
significant variations over short and long durations of time. Therefore, the
demand for a resource is likely to change during the lifetime of an active
flow. Pricing should reflect the current demand, and the user should be able
to adapt its transmission rate at any time during the lifetime of the session.

• Stability: While any real control system with delayed feedback will generate
some oscillatory behavior, the pricing framework should not coerce users
into an unstable or chaotic traffic pattern. It should be possible for a user
to transmit at a rate that is stable while maximizing its consumer surplus.

The framework described in [8] along with our pricing strategy meets the goals
stated above, as will be shown in subsequent sections.

Let Q be the total number of classes of service, labeled q ∈ {1, . . . , Q}, in
order of increasing priority. Packets that arrive at a router and are headed to
a certain output link are all queued separately based on the class of service
to which the packet belongs. We define a queue as a logical entity containing
a sequence of packets from the same service class that have to be served in a

93

FIFO order. The queue architecture assumed is a simple one similar to that in
DiffServ-capable routers. In fact, such a queue architecture with the capability
to classify packets based on their service classes and treat them accordingly
have also been implemented in simple hardware switches. Note that, depending
on the buffering architecture of the switch or the router, a queue may not be
the same thing as a buffer since a single buffer can implement multiple logical
queues [24]. We label the queues by the service class of packets in them, i.e.,
packets of service class q await transmission in queue q.

In our system model, the router uses a simple scheduling algorithm that gives
non-preemptive priority to a higher service class in scheduling packets for
transmission through the output link. Also, when the buffer is full and a packet
arrives from a service class q, the necessary number of packets from the service
classes below q are dropped to make room for the new packet. Packets from
the lowest class are dropped first. If the buffer is full and there are no packets
in it belonging to a lower service class, the new packet is dropped.

3 Pricing Strategy

Denote by Nq(t) the total number of bytes of data at time instant t in queue
q belonging to packets that have fully arrived into the queue, but have not
yet begun transmission through the output link. Consider a packet of length
l and service class S. Let tA denote the time at which this packet completely
arrives at one of the router queues. Let tB denote the time instant the packet
begins transmission through the output link.

We now describe the three components of the price charged to each packet
in our scheme. The sum of these price components is the total charge billed
corresponding to the packet.

Price due to bandwidth consumed: This component of the price is a function
of the length of the packet and the current demand for bandwidth on the link.
At the instant that a packet begins transmission, the set of packets that have
completely arrived at the router and are awaiting transmission are interpreted
as the total demand for bandwidth at that instant. In most Internet router
architectures, the price charged to the packet can be stamped on it only before
it begins transmission. Therefore, we ignore the demand due to packets that
become available for transmission after time tB. We expect this approximation
to have negligible effect on the dynamics of this scheme.

Let fbw(x) be the price-demand function expressing the price per unit of band-
width consumed when the demand for the bandwidth is x. Using the above
mapping between the number of bytes awaiting transmission and the demand

94

for bandwidth, one can now express this component of the price assigned to
the packet as,

Pbw = lfbw

S∑

q=1

Nq(tB)

 (1)

The assigned price is equal to the best-effort price (or the access charge) when
the demand is zero. Note that, for ease of implementation as well as to ensure
that the feedback to the user is based on the most current state of the router,
we use the size of the queue at time tB instead of time tA to compute this
component of the price.

Price due to preferential service rendered: This component of the price is based
on the preferential service received by the packet, defined in terms of the
number of other packets over which it receives priority. Let fps be the price-
demand function for the preferential service received by a packet when the
demand for this preferential service is x. A packet in service class S gets ahead
of all the packets in queues of classes below its own, since the router serves
packets from the highest class first. The total size of data over which a packet
receives priority is the number of bytes of data in the queues corresponding to
service classes below it. In our pricing strategy, this quantity is interpreted as
the demand for the preferential service enjoyed by the packet. Therefore, the
price due to preferential service charged to a packet that arrives fully at time
tA is given by,

Pps = lfps

S−1∑

q=1

Nq(tA)

 (2)

While the above two components of the price appear similar, they are both
necessary to ensure a pricing strategy that clearly recognizes the distinction
between the demand for the bandwidth resource and the demand for prefer-
ential service by the router. For example, consider a router state with a large
number of packets in its buffers, all of the same service class q. If we did not
use a separate price component for preferential service, and if there were no
packets of higher class in the queues, a new packet in a higher class could be
served ahead of the large number of packets in the queue q and still be charged
only approximately the same amount as the packet at the head of the queue
q. A more efficient market would ensure a fairer price where gaining priority
over a large number of other packets costs more than gaining priority over a
smaller number.

In addition, it is also possible to argue that the pricing component due to
preferential service helps reduce the length of traffic bursts on the network. A
simple example would be two traffic streams of separate priority classes, S1

95

and S2, in a non-preemptive queue. Without a price component for preferen-
tial service, a traffic burst utilizing the higher-priority service class, S2, could
block traffic of the lower-priority class, S1, for a long duration of time. This
would force either a long burst of class S1 after the completion of the class
S2’s burst, or worse, a buffer overflow in the S1 class. With pricing based on
preferential service rendered, however, departing traffic of class S2 will carry
pricing information indicating the depth of S1’s queue and will lead to a re-
duction in the sending rate of traffic class S2. In effect, this shortens the size
of the burst from S2, reduces the amount of time S1 is starved of service and
in addition, shortens the burst of traffic class S1 as the queue clears.

This separate pricing component for the preferential service delivered also
helps capture other parameters, such as delay, not captured by the conges-
tion state and bandwidth consumed. The above two components of the price
assigned to a packet differ in the following two ways:

• The price assigned for bandwidth consumed depends on the state of the
router at the instant that the packet begins transmission, while that for
preferential service rendered depends on the router state at the instant the
packet fully arrives at the router.

• The price assigned for bandwidth consumed depends on the number of bytes
of data in the queue of the packet’s own service class, while the price assigned
for preferential service does not.

Pricing due to buffer resources occupied: This third component of our pricing
strategy is intended to reflect the cost of buffer resources occupied by a packet
and the packet losses incurred by other flows due to it. The price assigned
to a packet due to the buffer resources occupied by it depends only on the
number and sizes of the packets that were denied this buffer space due to
its occupation of the space. This is the sum of the sizes of the packets that
are dropped during the time interval between the instant that a packet has
arrived at the router and the instant it begins transmission. Let Dq(t1, t2) be
the number of packets of service class q that are discarded during the time
interval (t1, t2). The price assigned to a packet of length l and service class S
due to the buffer resources occupied by it is, therefore, given by,

Pd = lfd

S∑

q=1

Dq(tA, tB)

 (3)

where fd(x) is the corresponding price function with regard to buffer occu-
pancy.

Fig. 1 shows a pseudo-code implementation of the above pricing strategy. In the
pseudo-code, N̄(q) expresses the sum of the sizes of all the packets that have
fully arrived in queues below and including q. D̄(q) expresses the number of

96

Initialize: (Invoked when the router is initialized)
begin

for (i = 1; i ≤ Q; i = i + 1)
D̄(i) = 0;
N̄(i) = 0;

end for;
end;

Enqueue: (Invoked upon the arrival of a packet)
begin

if PacketIsDropped
for (i = Pkt.ServiceClass +1; i ≤ Q; i = i + 1)

D̄(i) = D̄(i)+Pkt.Size;
end for;

else
for (i =Pkt.ServiceClass; i ≤ Q; i = i + 1)

N̄(i) = N̄(i)+Pkt.Size;
end for;
Pkt.Price = Pkt.Price

+ Pkt.Size×fps(N̄(Pkt.ServiceClass−1));
Pkt.IncomingDropCount = D̄(Pkt.ServiceClass);

end if;
end;

Dequeue: (Invoked upon scheduling a packet for transmission)
begin

DropCount = D̄(Pkt.ServiceClass)
− Pkt.IncomingDropCount;

Pkt.Price =Pkt.Price
+ Pkt.Size ×fbw(N̄(Pkt.ServiceClass));

Pkt.Price = Pkt.Price + Pkt.Size ×fd(DropCount);
for (i = Pkt.ServiceClass; i ≤ Q; i = i + 1)

N̄(i) = N̄(i)− Pkt.Size;
end for;

end;

Fig. 1. Pseudo-Code Implementation of the Pricing Strategy

packets that have been dropped from classes below q. For purposes of brevity,
the pseudo-code ignores the issue of the number D̄(q) wrapping around in a
variable with a finite number of bits.

We assume that the three price functions involved, fbw(), fps() and fd(), are
either simple exponential functions or can be readily determined by the router
for any given value through a table look-up. This allows a flexible pricing
strategy through the ability to tune these functions as needed. To reduce
memory requirements, one may implement these as step functions at the cost
of a small amount of loss in pricing accuracy.

97

4 Pricing Function and Stability

We have chosen to examine the stability of our pricing strategy from a queuing
theoretic standpoint. Modeling our scheme in a discrete mathematical frame-
work provides several advantages over a rate-based model often used in a game
theoretic framework, such as those recently explored by Cao et al. in [5].

• Requirements for stability in Markovian systems have been rigorously de-
fined in the literature [13] and accepted by the networking community.

• It is possible to derive closed form expressions which relate a pricing scheme
to real world parameters, such as the probability of packet loss due to router
buffer overflow.

• Since routers perform scheduling and forwarding tasks on a per-packet basis,
as also briefly argued in [1], real router behavior in packet-switched networks
is best modeled using a queueing theoretic framework. Flow-based frame-
works model the system in terms of continuous values and rates, which tend
to approximate rather than accurately capture the true state of the router.

Our definition of stability for the proposed pricing structure is an extension
of Kleinrock’s results in [13] to encompass our economic model. We state that
a pricing function is both stable and feasible if and only if the capacity of the
network is sufficient to satisfy the traffic demand required by users who are
each attempting to maximize their individual consumer surpluses. Recall that
the consumer surplus represents the difference between the utility achieved
by the consumer (as measured by the maximum price the consumer is willing
to pay) and the actual price the consumer pays. As discussed in [13], a finite
value of the expected queue length implies stable operation.

We choose to examine the polynomial class of pricing functions utilized in [8]
and [21], which take the form shown in Equation (4) below.

P (n(t)) =

(
an(t)

C
+ b

)k

(4)

The above function computes a price P (n(t)) based upon the current buffer
occupancy n(t) as a function of the total buffer capacity C and constants a,
b, and k. As shown in subsequent analysis, careful selection of these constants
leads to stable network behavior. There are several characteristics inherent
to the polynomial pricing function which make it preferable to other schemes
explored in the literature, such as the barrier pricing function examined in [19]
and provided below:

P (n(t)) = a

(
1

C − n(t)
− 1

C

) 1
b

(5)

98

These advantages of a polynomial pricing function include:

• The price stamped by a barrier function asymptotically approaches infinity
as the buffer approaches its full capacity. Since it is possible for a burst
of traffic to arrive from several independent sources, each of which has no
prior knowledge of the buffer state, it is also possible for a user to be unfairly
penalized for sending only one packet.

• Polynomial pricing functions allow for the network engineer to define a
maximum price that can be charged to a packet requesting service. Allowing
customers to know that such a maximum price exists for each service class
will ease market acceptance.

The barrier pricing function, with prices approaching infinity as the use of
network resources approaches full capacity, can be readily seen to be stable.
In the following, we show that the polynomial pricing function can also provide
stable transmission rates for the end-users.

4.1 Queuing Analysis

We model the system as an M/M/1 queue where the total amount of traf-
fic handled by the network is the sum of the traffic submitted by multiple
users operating independently of one another. Each user seeks to maximize its
own consumer surplus, balancing its utility gained from the network services
against the price it has to pay for the service.

As in [8] and [21], we assume that each user i has a predefined utility function
of the form,

ui (λi(t)) =

wi
λi(t)

β−1
β

: β < 1

wi log (λi(t)) : β = 0
(6)

The variable wi may be interpreted as the user’s need for bandwidth, and
consequently, the willingness to pay for said traffic. In the above equations, β
represents the steepness of the demand curve as a function of bandwidth λi(t).
In the following, for brevity and clarity of presentation, we consider only the
case where β = 0.

A price, calculated by the polynomial function discussed earlier, is affixed to
each packet. If we assume that feedback is instantaneous, it then becomes the
goal of each user to maximize its individual consumer surplus, si:

si (λi(t)) = ui(λi(t))− λi(t)P (n(t)) (7)

99

λi(t) = min

{
wi

P (n(t))
, λmax

i

}
(8)

where λmax
i is the maximum possible transmission rate of node i. If we establish

a desired rate for each user, and the total desired rate of each user is within
the bandwidth capacity of the router, the unconditional stability requirement
is met. In this case, users can ignore short term price fluctuations in much the
same way that commuters ignore small jumps in the price of gasoline.

Assuming that each user is continually attempting to maximize its own con-
sumer surplus, it can be shown that, through combining Equations (4) and
(8), the traffic submitted by each user for transmission is given by:

λi(t) = min

wi(
a(n(t)+1)

C

)k , λmax
i

(9)

The queue state probabilities and the expected queue size of a system oper-
ating under the pricing function presented in (4) are shown below:

pn =

(F(a,k))n 1

n!k

1+F(a,k)1Fk

[
1

21,...,2k
;F(a,k)

] : k > 1

e−F(a,k) (F(a, k))n 1
n!

: k = 1

(10)

E[n(t)] =

F(a,k)0Fk−1

[
21,..,2k−1

;F(a,k)

]

1+F(a,k)1Fk

[
1

21,..,2k
;F(a,k)

] : k > 1

F(a, k) : k = 1

(11)

where

F(a, k) =
(

C

a

)k ∑
i wi

µ
(12)

and nFm[. . . ; x] is a simplified notational form of the generalized hyper-geometric
function [12]:

nFm

[
a1, a2, . . . , an

b1, b2, . . . , bm

; x

]
=

∞∑

k=0

(a1)k(a2)k . . . (an)k

(b1)k(b2)k . . . (bm)k

xk

k!

(a)k =
Γ(a + k)

Γ(a)

100

0 5 10 15 20 25 30
0

0.06

0.12

0.18

0.24

0.3

Buffer Depth

P
(B

uf
fe

r
D

ep
th

)

0 5 10 15 20 25 30
0

3

6

9

12

15

P
ric

e

a = .3C
a = .1C

Fig. 2. Buffer Distribution under Polynomial Pricing Function

The reader is referred to the Appendix for a full derivation of the above result.
Note that, for k = 1, the expected queue length resolves to the mean of the
Poisson process.

4.2 Parameter Determination

As stated earlier, a pricing function is stable and feasible when the optimal
traffic load generated is within the capacity of the network. The operational
capacity of the network, however, is a function of the applications utilizing
the bandwidth and may depend on such factors as mean buffer occupancy
and packet loss rate. The multiple parameters available in the pricing functions
discussed above provide the network engineer with the tools needed to perform
such traffic shaping.

In general, the service provider chooses a targeted packet drop probability, pd,
and an expected buffer occupancy, E[n(t)], as shown below:

pd =
∞∑

n=C+1

pn (13)

E[n(t)] =
∞∑

n=0

npn (14)

Fig. 2 shows the effects of manipulating a single pricing function on the buffer
distribution. The expected buffer occupancy is displayed as +-marked curves,
while the straight lines represent the polynomial pricing functions. The buffer
occupancy shifts from 10 packets to 3.3 packets as the parameter a changes
from 0.1C to 0.3C. It is possible to further limit the buffer overrun probability

101

by increasing k. This, in turn, causes the price affixed to the packet to rise at
a greater rate with respect to the buffer occupancy.

5 Simulation

5.1 Price-Demand and Utility Functions

For the purpose of simulation, we model a collection of individual users who
continually optimize their individual bandwidth allocation according to the
utility functions defined in Section 4.1.

In a real world situation, the assumption that a user will have instantaneous
knowledge of the price state of the router is not applicable. Therefore, the user
needs to compute an estimated price based solely upon the history of prices
stamped on its packets. Let p̄(t − τ, t) denote the average value of the price
stamps on packets received within the time interval (t − τ, t). The estimated
price at any given instant t is the weighted average of the previous price
estimate and p̄(t−τ, t). In our simulations, τ is set to a value of approximately
two round-trip times.

p̂(t) = (1− α) p̂ + αp̄(t− τ, t) (15)

Unlike in [8], a constant feedback rate is not assumed or needed for each user to
determine their needed bandwidth. The target bandwidth shown in Equation
(7) is used to determine the probability that a user will transmit a packet
during any given cycle.

As in other related works, we use an iso-elastic price curve with respect to the
demand, as follows:

Pbw =

abw

C

S∑

q=1

Nq(tB) + bbw

kbw

(16)

where abw is a function of the total buffer size, bbw is a function of the desired
maximum buffer occupancy, and kbw defines the steepness of the price-demand
curve as the demand increases.

As in the case of bandwidth consumed, we assume an iso-elastic price curve

102

defining the preferential service component of price as well, given by,

Pps =

aps

C

S−1∑

q=1

Nq(tA) + bps

kps

(17)

where aps, bps, and kps serve similar curve-shaping functions as in Pbw. The
price curve for buffer resources is similarly given by,

Pd =

ad

C

S∑

q=1

Dq(tA, tB) + bd

kd

(18)

5.2 Simulation Environment and Results

We simulate ten users with different utility-demand curves competing for ser-
vice at a single router. The router can transmit only one packet per cycle,
while a total of eight packets can be submitted to the router per cycle. The
size of the shared buffer, C, is set to carry a maximum of 50 packets, with
each packet being 576 bytes in size. Each of our simulation experiments runs
for 30,000 cycles. The simulated pricing functions are chosen as follows.

Pbw =

C−1

S∑

q=1

Nq(tB) + 1

2

(19)

Pps =

8C−1

S−1∑

q=1

Nq(tA)

4

(20)

Pd =

16C−1

S∑

q=1

Dq(tA, tB)

4

(21)

In the first of our simulation experiments, eight users send traffic in the lowest
available service class. Each individual user, however, has a slightly different
utility function. As can be seen from Fig. 3, all eight users realize a steady-
state convergence to an optimum bandwidth over the long term. While the
figure appears to show an increased jitter in the transmission rates for high-
bandwidth users, these variations as a fraction of the average transmission rate
are approximately the same as in the low-bandwidth users. Users who demand
the most bandwidth, and therefore send more packets, receive price feedback
more often than the low-bandwidth users. The user adaptation function of
a high-bandwidth user, therefore, has more reliable information about the
recent history of router state and adapts more optimally. This effect, however,

103

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

Cycles

B
an

dw
id

th
 (

P
ac

ke
ts

 •
 C

yc
le

−
1)

Fig. 3. Bandwidths achieved with all users in the same service class

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

Cycles

B
an

dw
id

th
 (

P
ac

ke
ts

 •
 C

yc
le

−
1)

Fig. 4. Bandwidths achieved with each user in a different service class

is countered by the fact that high-bandwidth users suffer from an increased
average delay since they are more likely to continue sending packets when the
buffer occupancy is high. This introduces an undesired delay in the control loop
for high-bandwidth users, and allows larger oscillations in the transmission
rates.

In the second of our experiments, we re-examine the situation with each user
sending traffic in a different service class. As shown in Fig. 4, with each of
the users having an infinite number of packets available for transmission, the
higher-priority users demand successively lower amounts of traffic. This is a
commonly cited example of differentiated service network utilization, where
large scale bulk traffic use, such as e-mail, is relegated to a lower priority
queue, and high priority traffic, such as key frames in an MPEG, is placed
in a higher scheduling priority. Also, as can be seen in Fig. 5, the higher the
user’s desired service class, the higher the price and the lower the average

104

1 2 3 4

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

Service Class

A
ve

ra
ge

 P
ac

ke
t C

ha
rg

e

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Service Class

A
ve

ra
ge

 D
el

ay
 (

C
yc

le
s)

Fig. 5. Average price and delay for each class

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Cycles

B
an

dw
id

th
 (

P
ac

ke
ts

 •
 C

yc
le

−
1)

Fig. 6. Bandwidths achieved with class differentiation across a multi-hop topology

delay experienced.

The third experiment we conducted dealt with performance across multi-hop
topologies. Rather than passing through a single bottleneck device, the traffic
generated passes through a pair of routers, each adding its own charge for
preferential service and buffer occupancy. As can be seen in Fig. 6, even though
the users are operating in multiple priority classes, the overall stability of the
user’s bandwidth demands has improved. The price stamped on a packet that
traverses a mutlihop topology is smoothed by the stochastic nature of the
traffic that is not part of, but intersects with, the flow as it traverses the
multiple routers.

105

6 Operational Issues and Concluding Remarks

There are several different ways to implement the pricing strategy discussed
in this paper in a large-scale network such as the Internet. In the following,
we briefly discuss some operational issues along with a feasible multi-phase
approach to the actual deployment of the pricing strategy.

6.1 Availability of best-effort service

Critics of economic approaches to congestion control and preferential service
argue that the Internet is free and should always remain so. It is easily ar-
gued that the Internet is not actually free [16], but the authors do agree with
the sentiment behind the critics’ argument: best-effort traffic should not be
charged beyond the charge for network access. In a preferential service scheme
regulated through pricing, best-effort traffic is essentially a background event
that would have little bearing on the performance of paying customers. The
pricing functions presented should be configured so that the only packets ac-
counted for are those requesting some level of service over that of best effort.
It is in this fashion that dynamic pricing such as that presented in this pa-
per, along with the automated provisioning behavior associated with it, will
allow for best-effort traffic to peacefully co-exist alongside preferential-service
traffic.

6.2 Initial deployment

An initial roll out of a pricing strategy can occur between ISP peers who
are observing a mutual SLA for the purpose of QoS provisioning through
DiffServ. In this situation, both ISPs are already performing traffic metering
at the endpoints of the network and have entered into a business agreement
that places a monetary value upon real network traffic parameters, such as the
bandwidth utilized and the percentage of packets dropped. Rather than place
prices on the bulk volume of traffic exchanged in each service class, the two
network peers can agree on a dynamic pricing strategy which would serve to
limit the number of packets dropped, perform traffic shaping at each endpoint
and serve to continually account for the amount of traffic passed by the peers
across each other’s borders.

A multi-homed ISP has even more options for developing and manipulating
pricing contracts. Rather than paying a conventional flat rate or a per-bit
price for access from its upstream providers, such an ISP can negotiate for a
dynamic, congestion-dependent pricing strategy with both upstream ISPs. The

106

downstream ISP can then utilize a constraint-based routing algorithm locally
to minimize cost for its own outbound traffic, and then pass the savings on to
its customers, thus leading to a fair and almost perfect market for bandwidth.

Since each router in the path of a packet adds its charges to the price field
in the packet, it may be impossible to identify how much of the total charge
assessed for each packet originates from which ISP in the traversed path.
Therefore, the billing for the total charge can only come from one source
which will most likely be the user’s ISP. However, each ISP would have to
accumulate all its charges for all packets from each of its upstream ISPs and
bill them accordingly. Thus, while the user pays its own ISP, each of the
downstream ISPs, through bilateral arrangements, will need to recover their
costs from their respective upstream ISPs. The billing chain between the ISPs
will ensure that each ISP is paid for exactly the amount assessed to each
packet it forwards, even though the packet itself does not carry a breakdown
of the price information among the different ISPs.

6.3 End-user integration

From the end-user’s point of view, when the adaptation in our pricing strategy
is accomplished at an intermediate point such as the ISP, using a congestion
dependent pricing network will be no different from using a conventional net-
work. For example, the local ISP can perform dynamic traffic shaping and
manage the continual flow of pricing information without informing the end-
user of the congestion states of the network. Rather than relying on the end-
user to continually update his or her transmission rate based upon the latest
congestion information, the local ISP can establish congestion-dependent price
points for different levels of service. These price points can be updated hourly
and passed on to the user via a local status web page, or can be updated
monthly, so as to allow for the user to sign a flat-rate contract that encom-
passes a variety of network services.

However, there are certain advantages to pushing the pricing information to
the end-user; most importantly, it allows the individual end-user or the end-
user application greater freedom in the control of its own network connection
and the associated traffic it generates. The incentive to regulate the traffic
will derive from the dynamic pricing information conveyed to it. While it can
be argued that the volume of pricing information presented to the end-user
is overwhelming and unusable on the time scales corresponding to human re-
sponse times, the end-user software may facilitate human decision-making by
extracting trends in the pricing information and presenting them to the hu-
man user in a convenient format at appropriate intervals of time. Alternately,
a more effective technique would be for the end-user application software to

107

adapt based on a priori instructions by the human end-user. There is a long
precedence for such actions taken by end-user software. Conventional con-
gestion control schemes, such as those employed by TCP, already take place
without the user’s knowledge or direct intervention. In the case of the pricing
strategy presented, the end-user would have control over a bandwidth man-
agement agent which would know the user’s preferences with regard to cost
minimization, delay control, and bandwidth needs. This agent would then
take responsibility for network management at the end-point, in much the
same way as applications that utilize RTP [10] react to network congestion
issues without the intervention of the user.

6.4 Charging Receivers

It has been argued that the vast majority of Internet traffic, primarily due to
web-based applications, is initiated by the receiver; therefore, it is only appro-
priate that the receiver, rather than the sender, pay for the transmission [23].
Our pricing strategy does not preclude receiver payments except to push trans-
actions for such payments to higher layers of the protocol, as is already the
case in the current Internet. It is possible to structure the actual payment and
accounting system in a variety of ways to accommodate payment by receivers.
For example, web servers currently pay for the volume of transmitted traffic
by transmitting advertisements to the receiver, or through a subscription ser-
vice. As already discussed in the previous paragraph, delivery of web content
through best-effort service will continue to preserve current modes of payment
by the web hosts. Only the delivery of web content at higher levels of quality
of service, in conjunction with a pricing framework such as the one presented
in this paper, may involve assessing higher subscription fees to the receiver.

6.5 Conclusion

In this paper, we have presented a novel pricing strategy based on separating
the pricing components due to network resources and due to the preferential
service received by a packet. This strategy allows a simple, practical and com-
putationally efficient means to achieve QoS provisioning for multiple classes of
service in a DiffServ environment, while also maintaining stable transmission
rates from the end users. In particular, our strategy of adding a separate price
component for preferential service allows a more efficient market in which the
price charged for each service class is determined by the cost of providing such
service and the dynamically changing demand for it. This serves to enforce
efficiency in capacity management among the various service classes. We have
used both queueing-theoretic analysis and simulation to demonstrate the sta-

108

bility and feasibility of such a pricing strategy. Our pricing strategy can be
adapted in a variety of frameworks that achieve congestion control and differ-
entiated services through pricing.

A Appendix: Pricing Function Derivation

A.1 Generalized Stability Issues

The system is modeled as an M/M/1 queue with multiple users continually
adjusting their own transmission rates in order to optimize the total consumer
surplus gained from the network. In order to remove the stability issues as-
sociated with the price estimation functions utilized by individual users, we
assume that each user receives instantaneous price feedback from the network.

Under this framework, the total amount of traffic submitted to the network
by the users can be expressed as:

λ(t) =
∑

i

min

{
wi

P (n(t))
, λmax

i

}
(A.1)

Based upon Equation (A.1), the state transition probabilities of the queue are
given by:

πn−1,n =

∑
i wi

P (n)
(A.2)

πn,n−1 = µ (A.3)

As stated in [13], ergodic behavior of the Markov chain can be attained under
the following conditions:

∞∑

n=0

n−1∏

k=0

λk

µk+1

<∞ (A.4)

∞∑

n=0

1

λn
∏n−1

k=0
λk

µk+1

=∞ (A.5)

The above conditions can be met given that the following statement is achieved:

109

λn

µn−1

< 1 : n ≥ n0 (A.6)

We can then also state the following about the Markov state probabilities:

pn =

(∑
i
wi

µ

)n ∏n
i=1

1
P (i)

1 +
∑∞

k=1

(∑
i
wi

µ

)k ∏k
i=1

1
P (i)

(A.7)

A.2 Polynomial Pricing Function

Under the polynomial pricing strategy presented in [8, 21], the price stamped
by the network and the total amount of traffic submitted to the network
becomes the following:

P (n(t)) =

(
an(t)

C
+ b

)k

(A.8)

λ(t) =
∑

i

min

wi(
a(n(t)+1)

C

)k , λmax
i

(A.9)

C represents the capacity of the buffer. n(t) is the number of packets currently
in the queue. b represents an overstatement of the current queue state, which
is in effect, a base access charge. For simplicity in presentation, we assume
that b is a

C
. This is a minor modification that is tantamount to establishing

a minimum access charge for network resources. The resultant Markov state
transitions are shown below.

πn−1,n =
(

C

a

)k ∑
i wi

nk
(A.10)

πn,n−1 = µ (A.11)

We can then say the following about the state probabilities:

pn = p0 (F(a, k))n 1

n!k
(A.12)

p0 =
1

1 +
∑∞

n=1 (F(a, k))n 1
n!k

(A.13)

110

where

F(a, k) =
(

C

a

)k ∑
i wi

µ
(A.14)

For integer values of k > 1, the state probabilities and expected buffer occu-
pancy reduces to a function of the generalized hyper-geometric series [12], as
shown below:

p0 =
1

1 + F(a, k)1Fk

[
1

21,...,2k
;F(a, k)

] (A.15)

pn =
(F(a, k))n 1

n!k

1 + F(a, k)1Fk

[
1

21,...,2k
;F(a, k)

] (A.16)

E[n(t)] =
F(a, k)0Fk−1

[
21,..,2k−1

;F(a, k)
]

1 + F(a, k)1Fk

[
1

21,..,2k
;F(a, k)

] (A.17)

A situation similar to the linear case, k = 1, is examined in [13]. The buffer
distribution is given by:

p0 = e−F(a,k) (A.18)

pn = e−F(a,k) (F(a, k))n 1

n!
(A.19)

E[n(t)] =F(a, k) (A.20)

A finite value of the expected buffer occupancy, as discussed in [13], proves
stable operation.

References

[1] J. Altmann, H. Daanen, H. Oliver, and A. Sánchez-Beato Suárez. How to
Market-Manage a QoS Network. In Proceedings of IEEE INFOCOM, New
York, NY, June 2002.

[2] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin. REM: Active Queue
Management. IEEE Network, 15(3):48–53, May–June 2001.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. RFC 2475:
An Architecture for Differentiated Services, December 1998.

111

[4] R. Braden, D. Clark, and S. Shenker. RFC 1633: Integrated Services in the
Internet Architecture: an Overview, June 1994.

[5] X.-R. Cao, H.-X. Shen, R. Milito, and P. Wirth. Internet Pricing with a Game
Theoretical Approach: Concepts and Examples. IEEE/ACM Transactions on
Networking, 10(2):208–216, April 2002.

[6] R. Cocchi, S. Shenker, D. Estrin, and L. Zhang. Pricing in Computer
Networks: Motivation, Formulation, and Example. IEEE/ACM Transactions
on Networking, 1(6):614–627, December 1993.

[7] E. W. Fulp and D. S. Reeves. Optimal Provisioning and Pricing of Differentiated
Services using QoS Class Promotion. In Proceedings of the INFORMATIK:
Workshop on Advanced Internet Charging and QoS Technology, Vienna,
Austria, September 2001.

[8] A. Ganesh, K. Laevens, and R. Steinberg. Congestion Pricing and User
Adaptation. In Proceedings of IEEE INFOCOM, pages 959–965, Anchorage,
AK, April 2001.

[9] R. J. Gibbens and F. P. Kelly. Resource Pricing and the Evolution of Congestion
Control. Automatica, 35(12):1969–1985, 1999.

[10] Audio-Video Transport Working Group, H. Schulzrinne, S. Casner,
R. Frederick, and V. Jacobson. RFC 1889: RTP: A transport protocol for
real-time applications, January 1996.

[11] A. Gupta, D. O. Stahl, and A. B. Whinston. Priority Pricing of Integrated
Services Networks. In L. W. McKnight and J. P. Bailey, editors, Internet
Economics, pages 323–352. MIT Press, 1997.

[12] G. H. Hardy. Hypergeometric series. In Ramanujan: Twelve Lectures on Subjects
Suggested by His Life and Work, chapter 7, pages 101–112. Chelsea, 3rd edition,
1999.

[13] L. Kleinrock. Queueing Systems, volume I: Theory, chapter Birth-Death
Queueing Systems in Equilibrium, pages 89–114. Wiley-Interscience, New York,
NY, 1975.

[14] J. K. Mackie-Mason, L. Murphy, and J. Murphy. Responsive Pricing in the
Internet. In L. W. McKnight and J. P. Bailey, editors, Internet Economics,
pages 279–303. MIT Press, Cambridge, MA, 1997.

[15] J. K. Mackie-Mason and H. R. Varian. Pricing the Internet. In B. Kahin and
J. Keller, editors, Public Access to the Internet. Prentice-Hall, Englewood Cliffs,
NJ, 1995.

[16] J. K. MacKie-Mason and H. R. Varian. Economic FAQs about the Internet.
In L. W. McKnight and J. P. Bailey, editors, Internet Economics, pages 27–62.
MIT Press, Cambridge, MA, 1997.

[17] P. Marbach. Pricing Priority Classes in a Differentiated Services Network.
In Proceedings of the 37th Annual Allerton Conference on Communications,
Control, and Computing, Monticello, IL, 1999.

112

[18] J. Martin and A. Nilsson. On Service Level Agreements for IP Networks. In
Proceedings of IEEE INFOCOM, New York, NY, June 2002.

[19] J. Murphy and L. Murphy. Bandwidth Allocation by Pricing in ATM Networks.
In IFIP Transactions C-24: Broadband Communications II, pages 333–351,
Paris, France, March 1994.

[20] A. Odlyzko. Paris Metro Pricing for the Internet. In ACM Conference on
Electronic Commerce, pages 140–147, Denver, CO, November 1999.

[21] A. J. O’Donnell and H. Sethu. A Novel, Practical Pricing Strategy for
Congestion Control and Differentiated Services. In Proceedings of the IEEE
International Conference on Communications, volume 2, pages 986–990, New
York, NY, April–May 2002.

[22] I. Ch. Paschalidis and J. N. Tsitsiklis. Congestion-Dependent Pricing of
Network Services. IEEE/ACM Transactions on Networking, 8(2):171–184, April
2000.

[23] S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in Computer Networks:
Reshaping the Research Agenda. ACM Computer Communication Review,
26(2):19–43, April 1996.

[24] Y. Tamir and G. L. Frazier. Dynamically Allocated Multi-Queue Buffers for
VLSI Communication Switches. IEEE Transactions on Computers, 41(6):725–
737, June 1992.

[25] X. Wang and H. Schulzrinne. Pricing Network Resources for Adaptive
Applications in a Differentiated Services Network. In Proceedings of IEEE
INFOCOM, pages 943–952, Anchorage, AK, April 2001.

[26] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New
Resource ReSerVation Protocol. IEEE Network, 7(5):8–18, September 1993.

113

���� ��� ����	�
�� ��	
� �	�
������
����� ������	 ����� �����

����� �� ����
�
� ������� ���	�
� ����� ������ �
���� ���	�
� ����� ��� ���� �� ���
�

���������������
� � ��
!� ��
 ��	�
������ �
��� ��
� �� !������
�
�"����!
��� #��� ��
 ���
�	���
	���� �
�#�� ����
� � �
"
���

��
�� �� ��
 ��!
 ��!
� �����
�� �� �� �������"
� �
������
 ����
�� �� ��
 ����	����� �� ����#���� �"������
 �� � ��� �!��� ������	 ���#�

�� ����
�
�� ��
�� ���� ����
 ��
 ���� ����	� �����
�� �� ������	 �	�
������ 	�� �!���"
 ��
 ��������� �
�#

� ��
��� ���
� � !��

��
��	����
 �
����!��	
 ��� �!���"
 �
����!��	
 �
��!������� ��!
 �����
�
	�� $��� ���
� ��
�
��� � ��!��
� �����
���	�
��� ���

���� �!��
!
�����
 �	�
������ ���	�����
� 	���
� ������ ����� ��	�� ������ �
����
� �� ������ ��
 ���%�
 �

�� �� #��!���

�#��	����� #��	� �� ������� �� ���
�	���
	���� �
�#��� �� ������
� � ��
!�� &� ����
 �� ��
 	���������� �� #��!���
 �#��	���� �!���
�

�� ��
 �
����� ��� �� ���� �������
 ��� ��
 �� &��
��
� ����
�� ��� ��� �
��
� �����
�� ��� �
����!��	
 	����	�
�����	� ���� ��
"�����

��#� �	�
������ ��������!� �� 	�!������

���	�
�	 � ��	������ '
��	�� ����� ����� ��� ������� ����� ������ &� ���� ���
�� #

���"
 ���� ��� ��
���	�
��� #��� � �
�(��	
� #�� 	�!��
)�� �� *+,-� .
 ���� ��	��� �
��"
 ��
 �
����"
 �����
�� ����� �� ���� �

������� !
���	 ��
� �� !
����
 �����
��� .
 ���� �
��"
 ��
 ����� �� ��
 �����(�� ���
�	
)�
��
�	
� � � �
���# ���� ����"
� �� ��

��� �	�
���
�� ������ � ���� ���
� ��
�
��� ��!������� �
����� 	�!������ ��
 �����
�� ��� �
����!��	
 	����	�
�����	� �� ��� #���

���
� �	�
������ ���	�����
� �� 	�!������

���	�
�	 �

�	
�� ��������� %�
����� '
��	�� ����� ������ ������� ����� ������ �
����"
 �����
�� ������ %����� �� �
�"�	
� #��!���

�
�#����

�

� ����������

�� ������	������	� ���
	��� 	 �������� �������� �������
���	����� �	 ������� ����� �	
� 	��� ����� ����� ��

����� ���������� ����� �	
��� ����� ���������	��� �������� ��
�� ����������� ��������� ��	����� �� ��� ���	����	� 	
����
���� ��������� 	� � ���� ��	�� �������� ����� �	
�
���� ����� ��� ����� �������� �� ������ ���������� ���	���
���������� ���������
��� ��� ���������� ��� 	 ��������
������� �� ��������� �����	������
��� ��� ������	�����
��	� ���
	�� ������ �� ������� ����� �� ��� ���� ����� ����
���	����	� 	 ����
���� �� �����
����� � ���
	�� �� �
��������� ����������� 	� ��	������ ��	�����	� �	 �	
��
����� 	� �������� ���� ��� ���	������ �� �	� ������
���
��	���� �	������ ����������� �	
 ����� �	 ���� ������� �� �
���� ����� ���� ��� ��� ������ �� ��������� �����	������� ���
��	�����	� ���������� �� ��� ���������� 	 �������
����	��� ��� ��	����	� ���
��� ������ � ������� ���	����
������� �� ����	���� 	 �������� ������� �� � ��	����	� 	���
� �	�� ����������� ���	������ �	 ���� ���������	���
����
���	 ���������� ������������� 	 ���	������ ������� ������
���� 	� �������� ������������ 	 ������� ��� ���������	��

���	�� ������ ��� ��� ����� 	 ��� ������� !����� ������� ��
���	 ��������� 	� �		� ���	������ ����� ����� ���������
	 �	�� ����� �	
� �� ��� ���
	�� ��� ������ ���� �	
����������� �	����������

"	�� �
���� ������������� �������� 	� ������	������	�
���
	��� 	 �������� �������� �	
����� ��������� 	��� ���

	��� ����� 	 ���������� ���� �� ��������	��
���� �������
���	����� �	 	�� ����� �	
 ��� �	� �� ��������� 	� ��
��������� ����	� 	 ����� �� ��� �	�� �	��	��� ������
������ ���������� ����������� ������#	���������!�����
$�#�!%� ������� ��� ��������� �� ��� 	���� 	 ����� �������
������ &�� ��������� 	 ���� ������ �� ��� ���������� �����
��� ��������� �� �	� ���� �������� �	 ����������� ������� ��
��� �	
� �	
���� ���� ���	��� &�� ��������
��� �#�! ��
���� �� �	�� �	� ��	���� �������� ��	�����	� �	� � ������
������ �	���� ������� ������� �� � ���� ������ ���� ��� ���
����� 	� ���� ����	�� 	 ����� !��� � �	���� ���
������������ �������� ��� ���� ����� 	 ������� ���	�����
�	 �	
� �	� 	���� �	������ '� ��������� ��������� ��
(������)���� *	��� *	��� $()**% ��
���� ������� ���
������ ����������� ����� 	� ��� �	
� �	
���� ����
���	��� ��� ��� ��������� ��������� 	�� ������ �	� ����
����� �� � �	�����	��� ����	� �+ � &�� ()** ����������
�	
����� �� �	� ��� ����� �	
� ������� �	���� ������� ���
��� �� �� ������� ���� �����	� 	 ��� ��������� ����
�����

,�� 	 ��� ���������� �� ��������� � ��� ����������
���	����� 	� ������	������	� ���
	��� 	 �������� �������
�� ��� ������ ���������	� 	� ��� ��������� ���	��� ��

	���	�� �
������� �- � � �	����� ��������� ���� �� �����
���
	���� .	���	�� �
������� ��� ��� �������	�� ���

����� ���� �� � ������� 	 �������� ������� ��� �	��
�������� �� ������ ���� ���
	��� �/ � �0 � �1 � �2 � �3 � �4 �
.	���	�� �
������� �� ������������� �� ��� ��� ���� ���
����������� 	 �	
 �	���	� �� ��� ���
	�� ��� �� �������
���� � ������� &��� ���� 	 �	
 �	���	� �� ������ � ����� ��
	���� �	 �	� ��� �	 ��� ������� 	�������� 	��� ��� ���� ���
$��� ���� ���% 	 � ������ �	������ ��	�����	� ��������� �	
�	��� ��� ������ ���	��� ��� ���
	��� ' �
���� �� ���

&��� $��2��3$&*2� *2 ����44�4 �2' '&�$�&��$�' �5�$�6�� 7*4� ,/� 2*� /� 6��3� 0880

� ���� ��	
��� �	 �� ���
� ��� ���
 �
� ��������	� �� ���������� �	
�������� �	��	����	�� ������ �	��������� � ! �
���	�� ������� "
���#
���
��� "$ % &!� �#����' (������ ���
�)*�������������

� $�+� "���,
 �� ���
 -��,
�� .����	 /��0�� 1��������	������	��
����,�0���� .� 2&34 � �#����' ���������,
*���������

.�	������� ������� 23 5�	� 2&&&6 ������� 2 5��� 2&& �
7�� �	��������	 �	 �0���	�	� �����	�� �� �
�� �������� ������ ��	 �#���� ��'
���*������������� �	 ������	�� 8����� -�� 9��0�� 2�:2�

,819(:0,:;80;<,=�88 � 0880 &��� 114

���
	�� ����� ��� ��	�����	� �� ��� ���� ��� ��� ������� ��
�	 ��� ��5� �
���� 	� ��� ���������� ������ �� ��� ����� &��
���� 	 ��� ���� 	 ��� ������ 	��	
 ��� ���� 	 ��� ���� ����

#	������ � ������ ��������� �� �� 	����� ���� �� �

	���	�� �
���� ������� ������� ������� ���� �	�����	���
��� �	 � ������� �	
 ��� �	�������� 	 ���� ����� �	 ��
	�
����� �	 ��� 	����� ����� .� ����� � ;���� �� � �	�����
������ �	�������� � �������� 	 ���� ���� ���� �	 �� ������ ��
� ���, 	����� �	�� ����� ��������� 	� ��� �������
������������ 	 ��� �
����� � ����� ��� �	� �� ��� ����
����� �� � ���� ����� � ������ ���� ��� ���������
�������� �	����� ������ ��6 � ��� � ��
	���	�� �
��������
���� �	� ������� �	
� ����	� �� ��������5�� 	� ��� ����
���� ������ ���� ��� �� ����	�������� ������ �	 �����������
�� �	� ���� ���	����� �	 	���� �	
�� ��
	���	�� ���
	���

��� ������� �������� ��+ � ���� ��� �� ������ �� ��� �������
������� �� ���	��� �	 ���� �����	��� �� �� �	������ �	 �����
��������5 ���� �	� ������� �������� 	� ��� ���� ��������
����� � ���� �	
 ��� �� �������� � �������� ������� ��������
	�� ��� ��� ��� �����)���� *	��� *	��� $�)**% ���������

���� ������ ��� �	
 ������ �� �	�����	��� ����	�� ���
��������� 	�� ��� �	� ���� ������ &��� ������ �� ���� ���
��	�� ��� �	
� �� ����� 	 ��� ������ 	 ���� ���������
�	� ���� �	
 	��� ��� �������� 	 ����� 7	
����� ����
������ 	� ��������� ������� �� ��	���������� �5�������
����� �� ��� 	��� �� ���� � ����� ��� �� ���� �������
�������� ����������� �� ����� ��� �	
� $
���� ��� �� ��
�������� 	� ��	������%� �� ������	�� �� ������� ������� ����
������� ��� �)** ������ ���	���� ��������� ��� ����� 	
������� �� ��� ��� �	
� ��- � ' ���������������� ����������
�����	��� �� �	�� ��������� ����� �� ��� ������� � ������
������� ������

.	���	�� �
������ ��������� ��� � ���������� �������
����� �	
 �	���	� ��	�	�	� ���� �����	��� �	
�������
�	������	� ��� ��
��� ��� ��	����� 	 ��� ������ ���������
����� ������ 	� �� ������������� ������ 	 ����� !����� ��
�5������� �������� �� ��� �	� ��
��� �� �	������ �	 �����
��������5 ��� ����������	� 	 ������� �	� ������� �	
��
	�� ����	� ��
��� ����� 	�
������ ������� �	� ��	����
�	
 ����� ��� ���� ���	����� �	 ��� ������ ��������� �����
������ ��� 	�
������ &���� ������ ��� ���� ���� � ������ ��
�� ��� ������ 	 ��� ����������	�� ������� �	� 	���� �	
�
��� �� ��	����
���	�� ������ �	 ��� 	����� ���� ����

���� ����� ��� �	 ���� ����� ����������� 	��� ��� �����
&����	��� ��� �������� ������� 	 ��� ��� 	 � ���	����� ��
���� ���� ��� 	����� ����� �� ��� ������ 	 ���� � �	

	������� ��� ����� ��
	���	�� ���
	���� �����	��� �������
��	��� �� ����� 	� ��� ������ 	 ���� ���� �	
 	������� �
���� ��� �	� 	� ��� ������ 	 ���� ���� �� ���� �	
 	���
��� ����� &��� ������ 	 ���� ������� 	� ��� �	
�������
�	������	��
���� ��� �� ���� �	 �������
���	�� �	����5
������� ����������� ��
	���	�� ���
	���� ������ ��
�������� �	����� ��� ���� 	���� ���
	���� ���� ������ 	
���� ����	� �� ���������� ��������� �	� ��	
����� 	 ���
������ 	 ��� ������ ����� ������������ &�� ������ ������ 	
���� ���� � ������ ����� �	 �� ��������� ����� ��� �	� ��
��	
� ����� ��� ���� ��� 	 ��� ������ �� ��������� '
���������� ���������� 	�
	���	�� ���
	���� �����	���
��	��� �� ���� �	 ���� � ������	� 	� �������� ���
����������	� 	 � ������
���	�� ��	
����� 	 ��� ������

	 ���� ��
��� ���� �	 �������� ��� ������ ������� �� ������	��
��� ���	����� ���	 ����	� ������ �� ����� �	��� 	� ����
������ 	 ����� �� 	����
	���� ��� ������ ������������ 	

	���	�� �
������� ������� ���� � ��������� ���	�� ���
	������	��
���	�� �	� ��������	�� 	� �	
 �	�� ��
���
���� �	 �������� � �������

�� �������	��� ���������� ����������� �� �� ��������� �������
���� ��� ������ 	 ���� �� ����� �	 �������� � ������ �� ��������
��	�	���	��� �	 ��� ��8� 	 ��� ������� &����	��� ��� ��	����
	 ��������� � ��� ��������� 	�
	���	�� ���
	��� ��
���������� �	 ��� ��	���� 	 ��������� � ��� ��������� ��
��� �������	��� ������ ���
���	�� ��� ��������� ������
�	� ��������	�� 	� ��� ��8� 	 � ������ ��	�� ���������
��� ����������	��)���� 	� ���� ������������
� ������� 	��
����� �� � �	����	� �	 ��� ������ ��	����� �� ��	��� �� �	���
���� �� ���� ���� ������	������	� ���
	���� ��
��� �� ��
�������� �	������ ������ ������� �	 ����� � ����
��� ���
������ ������ �� �� ���� �����	��� ��� ��	���� �� ���� �����
�� �	� � ���� 	 ��	
����� 	 ��� ������ ������� 7	
�����

��� � ��������� ���� ��� ��8� 	 � ������ �	 ���� ���
������	��� �� ����	� �� ������� ������� �	 ��� ������
������������ 	
	���	�� �
��������

,��� ��� ���� ������� � ������� 	 ���	������ ���� ����
�	 ������� ������� �� ����
���� ���	����	� ���� ����
��	�	��� ��� ����������� �� �������� �	����� ��/ � ��0 �
��1 � ��2 � ��3 � ��4 � �+6 � �+� � �++ � �+- � ' ������ 	 �����
���������� ����������� ��� ��������� �� !����	� +� 9�	����
������� �	�� ��� ���������� ����������� ��	�	��� 	�
�������� �	����� ��� ������ �		 �5������� �	 ��������� ��
���������� ����
��� �
������ ������� 	 ���
	�� �	��
���5��� 	 ���������� ��	������� 	� ����	� �� ������ �������
�	 ��� ������ ������������ 	
	���	�� ���
	��� ���
������� ��	��� �	� �5������ �	�� ��������������� �����
������� ���� �� .������� ���� :������ �+/ � ���� �
	��
�	����5��� 	 ,$����%
��� ������� �	 ��� ������ 	 �	
��
,� ��� 	���� ����� �	�� ������� ����������� ���� �� ;�����
*	��� *	��� $;**% �++ ��� !������ *	��� *	��� $!**%
��3 � ��4 � �+6 ������� ��	
����� 	 ��� ����� �	��� 	�
������ ������� �	 ������� �
	�� �	����5��� 	 ,$�%�
��������� ���� ������� �	 ����� �	
	���	�� ���
	����
�� ���� ������
� ������� ������� <��	 <�0�	 =�<<>� � ��
�
������� ���� �������� ��� �	
�������� ������ ����������
���������� ���� ��� �� ���� �� �	�� �������� �	����� ���

	���	�� �
�������)������ ����� �������� <** ��� ������
������� ��� ���	������ ��������������� ���� �����	����
��	
� ���������� ���	������ 	 �	�������� ���������
��������� ;����� *	��� *	��� ��� !������ *	��� *	����

!����	� - �������� ��� <** ���������� ���	����� ��	��

��� ��� ����	���� ������ ��� !����	� / �������� ����������
������� 	� ��� ��������� �������� ��� ��� ���	������
��������������� 	 <**� .� �	������ � ��������� ������� �
��� 	���� 	 ���
	�� �	����5��� 	 ��������� ���
��������� � �������
��� ������� �	 ��� ������ 	 �	
��
�� ,$�%� .� ��	�� ���� ���
	�� �	����5��� 	 <** �� ,$�%�
����� �	 	� ������ ���� 	���� ���������� ������������ .�
������� ������� ����� �
������	
� ���
����� ����
������� ��	
� �� ��� �������� ������� �	��� ��2 � .� ��	��
���� ��� �������� ������� �	��� 	 <** �� ���
���� � �� ���
��8� 	 ��� ������� ������ ���� �������� ������� ������ ���
�5�����	� 	 <**� �������� !����	� / ���	 �������� �	���� 	�

��2���� �$ �4�> ��&� �2' ���&3&�2$ ��3��$ �3��'�4&2? ��&2? �4��$&3 �*�2' �*�&2

115

��� �������� ������� 	 <**� ��� ����� �5��������� �� ���
���� ������ 	 � ��
 �	
� ' �	
 �������� ������� ��
�������� �	 	�������� �	
 ���������
��� �	���	� ��������
&�� ������� �� ���� �����	� ������� �� ���������� ��		 ����
��� <** ���	����� ��� ������ ������� ��	�������� ��
���
�� ������ ���	������ ���������������� ���� 	���� ���
���������� ����������� 	 �	�������� ��������� ���� ��
;** ��� !**�

!����	� 0 �������� ������� ��������	� ������� 	� ���
������� ��� ���	������ ��������������� 	 ���� ���	����� ��
�	������	�
��� 	���� ���	������� !����	� 1 �	������� ���
������
��� � ��������� ������� 	 ��� ��	������� 	 <**
�� �	������	� �	 	���� ��� ���������� ���	������� &��
�	�������� �����	� ���	 �������� � ���� ��������	� 	 	����
���������	�� 	 <**�

� ���������� ��� �������� ����

&����	������ � ���� �� ������ �� � �������� 	 �������
��������� �� ��� ���� �	���� ��� ������ �	
��� ��� ����
���������	� ��� ��� ���� ���� �� ��� ���
	��� �� �� �������
���� ������� ���	����� �	 ������� �	
� ��� ������
����������
���� ���� �
��� ����������	�� ' ��
�����
�������� ������� �	� ����� ������ ��� 	�
���� ����
	� ����������	�� ' �	
 �� ���� �	 �� ������ ������ � ����	�
� ��� ����� �� �	������ ���	���	�� ���� ����	�� ' �	
 ��
�	������
��� ��� ����� �� ������ �	�� ����� ���� ��	���
�
��� ��� ��	�� �������	��� �������	� 	 � �	
 �	 ������� 	��
������� �� ���� ������ � �	
 ��� ���	 �� �	�� ��	����
������ �� ��� �������� �������� 	 ������� ������
���������� �� ��� ��������� ��� �	�������
��� 	����
��������� 	 ������� 	� ������� �� ��� ���������� �	�
�5������ �� �������� �������� � �	
 ��� ���	 �� ������ ��
��� ��� 	 ��� ������� ���	����� �	 ��� ���� �����
���
������� 	 ����� �	
� ������ �� ��� ��������� ���	��������

' ������� �������	� 	 ������� �� ��������� ��	�� ������
��������	� 	 ��� ���������� 	 �	
�� &�� ������� �	��	� 	
������� �� ��� ���	����	� 	 � ���	���� ��	�� ��������
���������� ��������
��� ����� ������ �	 ��� ���	����� ���
������� �������� �� �� 	��	
� �+/ =

� &�� ���	���� �� ���	����� �� 	���� 	 ����������
�������

� �	 ���������� ������ ���� � ����� 	 ��� ���	����
������ ���� ��� �������

� *��������� ��������
��� ���������� ������� ���
����� ������ 	 ��� ���	�����

&�� >�������8�� (�	����	� !������ $>(!% ���	����� �� ��
��������������� ��� ����� ���������� �����������
����
�������� ��� ��	�� �	��	� 	 ���	���� ������� ��/ � ��1 � &��
>(! ��������� ������ ���� ������ �	
?� ����� �� � �	����
�	��� ����	� ��� ������ �� �������������� ����� ��	��� 	
���� �	� ���� ����� �� ���� �
�� ���� ������ ��� �����
�������� 	 ����� �� ��� ����� ���� ����� �� ����� 	����
#	������ � ��� 	 � �	
� ���	��� �� �� �� � � � � � ���������
����
����� ��� ��� � � � � �� 	� � ���� 	 �	��� ����
���� ��
.���	�� �	�� 	 ����������� ������ �� � �� � � � � � ��� &��
>(! ��������� ���� ���	����� ��� 	 ��� ����
���� �	 ����
	 ��� ������ �	
�� � ���� �� �	�� ���� ��� ����
����
�������� �� �	
 �� ��� ������ ����
����� ���� ��� ��
������� ������� ��	�� ��� ��������� �� � �	
�� � ���

�	��� ����
���� ���	����� ���� �� �	 �	
 + �� �	�� ���� ���
��� ������ �5���� ����
���� �� ����� ������� �������� ����
���� ��	�� ��� ��������� �� � �	
�� &�� ���	����	�
��	���� 	 ��� >(! ��������� �	������� �� ���� ����	� �����
���� �	
 ��� �������� �	 �	�� ���� ��� ������ ���� � ���
������
�� �	� ��������� �	 ���� ���� ��� 	���� �	

���
������ �������

,��� ��� ���� ������� � ������� 	 ���	������ ���� ���� �	
������� ������� �� ����
���� ���	����	� �� ��� ��� ��	��
�������	� ���� ���� ��	�	��� ��� ����������� �� ��������
�	������ '��	������� ���� �� ?���
�� 7��� @����	� =?7@>
��/ � ��0 � ��� �	 ������� ��� ����� >(! ��������� �� �����
�������� ���� �������� ������
��� � ��	��
 	��0��� ���
�5������ �	������	� ���� 	 ��� ������ � ��
��� ���������
�� ��� >(! ���������� &�� .�: ��������� ���� ������ ���
������� �� ��� ���������� 	���� 	 ��� ����� �������� .�: ��
�	� ���� ������� �� ��� ����	� �� ���� �	 �	����� ���
����������� �� ������	�� .�: ����� �	� ��� �	��
���	������
��� �	����� ��	�� ��� ����������� ���������
�
	�� �	����5��� 	 ,$����%�
���� � �� ��� ������ 	
�	
�� '�	���� ���������� ����������� ?����#���� 7���
?���
�� 7��� @����	� ��� �	� �+� � ����	��� ��	� ���
�������	� 	 >(! ��� ����� ��� ������������	� ������� ��
���� �� ��� �� ��	
� ���� �	 ���������������� ��������� ���
�� �	�� ��� ���� �	�
� 7	
����� �	�
 ����� �	� ���
����
	�� �	����5��� �� .�:�

' ������� ������������	� �� �������� �� ����#����,� 7���
@����	� =��7@> ��2 �
���� ���� ��� ����� ������ 	 ���
������ ��������� ����� ����������� �� ��� �	�������	� 	
����� ������� 	� �������� �������� !#�: �� �������� ����
��� ���� .�: ��� ���	 ��� � ������ ����� �	���� �����#����
7��� @����	� =�7@> �+- � �� � ������� 	 !#�:
���� ���� ���
�������� ���� 	 ��� ������ ��������� �� ������� �	 �	�����
��� ��������� 	 ��� �������� ������� !�: ��� ������
������� ��	������� ���� !#�: ��� �	
��
	�������� �������
��	
�� ������� 	 �������� ��� ����������� �� ��	����
����	��� 	 ������� �	����5���� ������ 1���#�
��� ��
����	�
�+0 � �� ���� ������� ��� ���������?� ��������� ��	�� ��
����	������� ��@����� �	 ������� ��� ���� 	 �	������ ���
�������� ���
��� ��� ���� 	 �	
 ����������� ����
�������� ��� ���������� 	 �	
�� &�� �	����5��� 	
��������� �	�������	�� �� ������ ������� �� �
	 ��������
��	�	��� ��������������� ���	������� 7����#+��� 7���
@����	� =77@> ��� ������	� "���	����#+��� 7��� @����	�
=�"7@> �+1 � ��:� �	
����� ���� � ������ ����	��� ��

���� ��� ������� ������� 	� ��� ���� ��8� ��	��� �� ���
������������	�� !(�: ��� ������ ������� ��	������� �� �
�	�� 	 �	�� �	����5��� ���� ��:�

�	�� 	 ��� ���������� ����������� ��������� ��	���
�	
����� ��	�� ��� ,$����%
	�� �	����5��� ���	������
���
�	����� ��	�� ��� ����������� ������� <��	 <�0�	 =�<<>
�++ � � ���� ��� ��� �	�� ������� ���������� ����������
���
�� ,$�% ����������
	�� �	����5����
�� ��	�	��� ��
!�������� ��� A������� �� �441� ;** �� �	� � �����
����������� ���	����� ���� �����	��� ��	��� ��� ���	�
������ �	�������	��� �	����5���� ;** ������ ������ �	
�
�� � ������ �	�����	��� 	���� ��� �������� �� �����������
��� ��������� 	 ���� ������������ �	�����	��� ��
����������� � ������ ���	��� =��> �	 ���� �� ���	��� 	
���� ���������� ' ;��	��� �� �������� �	 ���� 	 ��� �	
�

&��� $��2��3$&*2� *2 ����44�4 �2' '&�$�&��$�' �5�$�6�� 7*4� ,/� 2*� /� 6��3� 0880

116

���
��� � �	
 �� ������ 	� �������� ��� ;# �� �����������
�� ��� ������� ����� 	� ���� �	
� ' ������ �� ������ �	�
� �	
 	��� � ��� ������ ��8� �� ��� ���� 	 ��� �	
 ����� ��
���� ���� ��� ��� 	 ;# ��� ��� ������� �����B 	����
����
��� ��������� ������ ������� ��� ��5� �	
 �� ��� �	����
�	��� ��������� .��� � ������ �� ������������ ��� ;#
�	�����	����� �	 ���� �	
 �� ����������� �� ��� ��8� 	 ���
����������� �������

�� ;**� �� 	���� ���� ��� ����������
	�� �	����5��� ��
,$�%� 	�� ��� �	 ���� ���� ���� ��� ������� ����� ��	��� ��
�	 ������� ���� ��� ��8� 	 ��� ������� ������ ���� ���
�	��������� ������ �� ��� ��������� �++ � ,����
��� ��� ����
������
	�� �	����5��� ��������� �	 ,$�% ����� 	�� ���
���	����� � �������	� ��
����� ���� ���� �������� ���� 	
��� � �	
� ��� �5������� ��� ���������� ;# ������� �	
������ �� �������� 	� ����������	�� ' ����������
	��
�	����5��� 	 ,$�% �� ������� �
� ���� ���� ���� �� �����
	�� ������ �� ����������� �	� ���� ������ �	
 ������ ����
�	���� &��� �� ������� � ��� ������� �� �	 ������� ���� ���
��8� 	 ��� ������� �	������ ������ ����� ���� ���������� ����
��� ������ ��8� �� ��� ���� 	 ���� ����� �� ��� ����� 	 ���
������� 	��	�������
��� ��
��� �� ���� ���� ��� ��� 	 ���
;# ����� ��� ��� ������� ����� 	 ��� �	
� �� 	���� �	
������� � ����������
	����	����5��� 	 ,$�%� �����	��� ���
;** ��������� �������� ��	
����� 	 ��� ����� �	��� 	�
��� ��8� 	 � ������� &���� ;** �� �	� ������� �������� 	�

	���	�� ���
	��� ����� �� �������� ��� ��	
����� 	 ���
��8� 	 � ������ ��	�� ������ � ������	� 	� ������������ ��
���� �� ������	� �������� �� ����� �	��� 	� ��� ��8� 	 �
�������

�� ��3 � ��4 � � ��� ��������� ������� �	 ;**
��
��	�	���� &��� ���	������ ����� ��	
� �� ������� <��	
<�0�	 =�<<>� ��� ���	 ���� ���� �� 	���� �	���5��� ���� �� ��
�+6 � !** �� � �	����� �����	� 	 ;** ��
���� ���
��������� �	������� ������� � �	
 �� �	�� �� ��� ;# �����
	 ��� �	
 �� �	������� .��� ��� ;# ���	��� ��������� ���
��������� ������ ������� ��� ��5� �	
 �� ��� �	�����	���
��������� &����
���� ;** ����� ���	
� � �	
 �	 	����
���
 ��� ���	��� ��� ��
���� �� ������������ �	
 �� ���
��5� �	���� !** ���	
� � �	
 �	 	������
 ��� ���	��� ���
������8�� ��� �	
 ���	������� �� ��� ��5� �	���� ;**
����� �� ���	��� 	 ���� �	
?� ������ �� ��������
���� !**
����� �� ���	��� 	 ��� ������� ������� �������� �� ����
�	
� !** �	�� �	� ������� ��� ��������� �	 ��	
 ��� ������
	 � ������ ��	�� ���������� ��� 7	
����� �� �	�� �������
��� ��� 	 � �5�� ������� �������� �	 ���� �	
 ��� �	����
'� �� ;**� �� 	���� �	 ������ �� ,$�% ����������
	��
�	����5���� ��� ������� ����� ��� �	 �� �	 ������� ����
��� ��8� 	 ��� ������� ������ ���� ��� �	��������� ������ ��
��� ���������� !**� ���� ;**� ����	� �� ������� ������� 	�
��� ��
	���	�� �
������� ����� �� ���	 �������� ��	
�����
	 ��� ����� �	��� 	� ������ ��8���

� � ���� ����� �����

<��� ��	��� <**
�� �������� 	�
	���	�� ���
	���� ��
��� �� ���� �� �
��� ������� 	 �	���5��
������� ����� ��
� ������ ���	���� ���� ����� �	 �� ���	����� ����� ��	��
�������� ���������� ��������� �� �	�� 	 ����� �	���5��� ���
������ ��	������� �������� �	
	���	�� �
������� ���
�������� ���� �� �	�� 	������ ��� ���������� ������ �	� ���

����������� ������ ������� ��� ������ ���	������ ����������
�������)������ 	 ���
��� ������������� 	 	�� �	����	� ���
�	 ���� ����
	�� ��� �� ������� �������		� ��� ���� �� �
��	���� ������� 	 �	���5���
� ������� ���� ���	����� �� �
�	����	� �	 ��� 	��	
��� ���������	� 	 ��� ��	�����

#	������ � �	
�� ����
��� �� ���	������ �����
���
������� �� ��� &�� ��������� �������� ������� �	� �����
������ ���	����� �	 � ���������� ���������� ��� 	�
����
���� 	� ����������	� 	��� �� 	����� ����� '� �� �������	���
���������� ��	������
� ���	
 ���� ��� ������ 	 ���� ��
����� �	 ������� � ������ �� ��	�	���	��� �	 ��� ��8� 	 ���
������C�	
����� �	 ����� ����
	�� �	
	���	�� ����

	���� �� �� ��;���� �
�� �
� ��
����	� �������
� 	�� ��,� �	�
���������	� �0��� �
� ��	��
 �� � ���,�� ����� �� ����������
���	������	� �
� ���,���

.� �	
 ��	���� �	 �������� ��� <** ���������
����
����� ��� ��	�� ������������ ' �����	��	�� �����������
��	� 	 ��� <** ���������� ���	����� �� ��	
� �� ���� ��
�	�������� 	 8	������A�� �	;����� ��� ��;���� �	������� &��
�	;���� �	����� �� ������
������� � ��
 ������ ������� �� �
�	
� &�� ��;���� �	����� �� ��� ����� 	 ��� ���	�����

���� ��������� ������� �	� ��� ������ �	�����	����� �	
������� �	
�� �� ���� ������
� ��� � ��� �� ��� ��������

��2���� �$ �4�> ��&� �2' ���&3&�2$ ��3��$ �3��'�4&2? ��&2? �4��$&3 �*�2' �*�&2

���� ,� ��
���(��
 ��� ����

117

����� 	 � ������ ���� ��� �� ������������� ��������� ���

� ������� ��� ������ 	 � ������ �� �����

.� �������� � ������ ����� ������ ��� $�����-���� 	 �	
�

���� ��� ������� ' �	

�	�� �����
�� �����	����
����� ��� �����	�� �	� �� ��� $�����-��� �� ����� �	 ��� ����
	 ��� ����
������� � ��
 ������ ���	����� �	 ��� �	

�������� &�� <** ��������� ������ ��� �	

 �� ��� ���� 	
���� ����� '��� ������� �	

� � ��� ����� 	 �	

 ���	���
������ �� �� ���	��� �	� ��� ����� ,� ��� 	���� ����� � ���
����� 	 �	

 �� �	� ����� ���� �� ��� �������� ��� �	����
�	��� ������� 	��	�������� �	

 �� ����� ���� �	 ��� ����
��� 	 ��� �����

#	������ ��� ������� 	 ����� ���
��� ��� ��������� ��
���� ��������8��� .� ����� <��	 �� 	�� �	�����	���
�������	� �������� �� ���� �� ��� �	�������� 	 ������ �	 ��� ���
�	
� ����
��� �� ��� $�����-��� �� ���� ��� .� ���������� ����
�������	� 	 � �	��� ����� ���� +�� '����� ���� �	
� �� ��
��� ��� ��� 	��� �	
� ������ �� ��� ��������� 	 <��	 �
&�� ������ 	 ��� ��������� �	 �	
� �� �� ��� � �	������
<��	 � D�� �	
 � ���	�� ������ ���� ��� ���� ������� ���
��� ��	�� ��� �	������	� 	 <��	 � D�� ��� ���� ������� ��
���� ��� �	������	� 	 <��	 � &�� ��������� �	�� �	�
����� �	
 � �� <��	 ����� �
�� �	� �� ��� $�����-��� ��
��� ����� 	 <��	 � <��	 2 �� �	
 ������ �� �	�������� 	
��� ������ �	 ��� 	 ��� �	
� ���� ��� �� ��� $�����-��� �� ����
��� '������� ���� �	
� �� �� ��� ��� ����� ������ �� ����
��� <��	 2
��� �	����� 	 ������ �	 ��� �	
� �� �� � ��� ��
�� ��������
� ����� �	���
 ����������� �� ��� ��� 	 ������
�	 ��� ��� �	
� �� ��� $�����-��� �� ��� ������� �	��� �
� �� ��
�	�������� �� 	���� ���� ��� ��������� ��	
� ��� ������ 	
�	
� �� ��� �	 ����� �� ��� ����� �	����
� ����	���� ���
�������� <��	<�0�	B�������	�
���� ���	��� ��� ������
	 �	
� ���� ��� �� ��� $�����-��� �� ��� ����� 	 � �	����

<��	<�0�	B�������	� �� ����������� �� 	�� ���� ����
�	
 �� ������ ����
��� �� ���������� ������ 8��	� ��
������� ��� ��� 	 � �	����

�� ���� �	���� ��� ���������� ���	����� ���������� ���
������ 	 ���� ���� � �	
 �� ���	
�� �	 ����� .� ���� ����
�������� ��� ������	�� 	� ��� �	
 ������ ���� �	���� &��
���	
���� �������� �	 �	

 ������ �	��� � �� ���	��� ��
�
���� &��� ���	
����� �	
����� �� �	� � ����� 	�� ��� ��
�������� ������� �� ���� � �	
 ��� �� ���	
�� �	 ���� �	��
���� �� � �	��� ���� ��� ���	
����� D�� ����
��� �� ���
������ 	 ���� ���� ��� ����������� �	� ��� ����� 	 �	

�� �	��� �� &�� <** ���������
��� ����� ������� ��� ��5�
������ �	� ��� ����� � ��� �	��� ������ 	 ����
����������� �� ��� �	
 �	 �� �� ��� ������� �	��� �� ����
���� ��� ���	
����� &�� <** ���������� ����� ����� ���
���������� ������	�
���	�� ��� ��	
����� ��	�� ���
������ ������� �	�� ���� ��� ���� ������ ����������� �� �
�	
 ��� ����� �� �	 �5���� ��� ���	
����� �� ��� ������

��� ��� ���	
���� �� ������� ���� ��� ��8� 	 ��� ������ ��
��� ���� 	 ��� �	�����	����� ������ .��� � �	
 ���� ��
������� �	�� ���� ��� ���	
����� �� �� ����������� �� ������
	������� �	�� ���� ��� ��� ����� 	 ��� ����
����� &��
��������� ���	��� ���� ��������� �� ��� ������� ���	� $!#%
���	������
��� ���� �	
� &�� ������� �	���� ������ ���
�	���� �� ��� ������ 	 ���� ��� �	
 ���� �� ������	� �	 ���
���	
����� D�� �
��� ���	�� ��� ������� �	��� 	 �	

 ��
�	��� �� &���� ���� ������� �	

 �� �	��� �� ��� ���������
�	������ �
��� �� 	��	
�=

�
��� � ����
��� ��
���� ���
D�� ������� ���	�� ��� ������� ������� �	��� ��	��

��� ��� �	
� ������ ������ �	��� �� &��� �������� �� ���� �	
����������� �	����� ��� ���	
����� 	� ���� 	 ��� �	
� ��
��� ��5� �	���� ����� ��� 	��	
��� ������	�=

�
��� � ��������� �� � �
��� ��� ���
�	�� ����� 	� ��� �	

��� ��� ������� ������� �	��� �� ���
�����	�� �	���� ��� ��
 ���	
���� �� �� &��� �� ������� ��
��� ������	� 	 � �� $+% �	 ���� ��� ���������
��� �������� ��
����� 	�� ������ �	� ���� �	
 ������ ��� ��5� �	����

&�� ���	
���� ����� �	 ���� 	 ��� �	
� �� � �����
�	��� �� �	� �5�� ��� �� �	������ ��������� 	� ���
������	� 	 ��� �	
� �� ��� �����	�� �	���� '��� ���
<** ��������� ������ �	

� � ��� ����� 	 �	

 ��
������ ��� ������� �	��� �� ����� �	 8��	 ��� �� �� ���	���
�	� ��� $�����-���� ,����
���� � �	

 ��� ������� �� ���
����� ���� ��� ����� 	� ����������	�� �� �� ����� ���� ��
��� ���� ��� 	 ��� �����

���� +� ����������� ��� ���� ����� �	���� �� �� �5�����	� 	
��� <** ���������� ����������� �� ���� ������ �� ���
��������� 	 ��� ���� 	 ����� �	����� ��� ������� �	����
	� ��� ����� �	
� ��� ��� .���� ��� ��� ��������8�� �	 6�
&���� �	� $+%� ��� ���	
���� ������ �	��� � �� ����� �	 �
	� ��� ��� �	
�� &�� ��8�� 	 ��� ������� �������� ���� �� ���
�	
 ������ ���� �	��� ��� ��	
� �� ��� �	��8	���� ����
��� ��� ��
 ���	
����� 	� ��� ��5� �	��� ��� �����
�	������ ����� $�% ��� $+%� �� �� ������ 	������� �	� ���
����� ����� �� �������� �	
�
���� ������� ���� ������ �������
�� � �	��� ��� ����� �� 	��	������� �	 ������� ��	�	���	�
������ �	�� ������� �� ��� ��5� �	����

&��� $��2��3$&*2� *2 ����44�4 �2' '&�$�&��$�' �5�$�6�� 7*4� ,/� 2*� /� 6��3� 0880

���� 0� +�- '
�������� �� � ����� ��� +�- �� ������������ �� ���

 ������ ��

�� ���
)
	������

118

���� - ��	
� � ��	�� ������� 	 � �	���	� 	 <** �	
���������� ��� ����	�� 	������	�� ���� �	 ���������
���
��� ��������� ��	��� ��	� ������� 	 	�� �	
 ��� �����
������� 	� ��	����� �� ��� �������� "�������.���� ���
<��	<�0�	B�������	� ��� ����������� �� ".���� ���
<<B�� &�� ���� ����� �� ��� ����� �������� ����������
��������
���� ��� ����� ���� ����� �������� �������� �����
�������� ����������� ���� �� ������ ��8�� ��� ������ 	
����	�� �	�������

?���
�� �<<� �� ��� ��������� 	 ������� 	 ����������	��
�� ���� �����	��
� ���� ��������� ��� <** ���������
�������� ���� ��� ��� ����� �	
� ���� ���� ����� �����

������� ����� ����� ������ �	 ��� ����
���� 	 ��� 	�����
����� ,�� ���� �	
�����
��� �	�� �	
� �	 ������� �
������� ����� 	 ��� ����
���� ���� �	�� 	���� �	
�� D��
���
����� ���	������
��� �	

 �� �
� ���������� ���
�������� ����� 	 ��� ����
����� &�� �	�������	� 	 ���
������� �	��� 	� ���
������� <** ��������� �� ��������� �	
���� 	 ��� ��
������� �����	�� 7	
���� ��� ���	
����
���������� �� ��� .������� <** ��������� ���� ���
	��	
��� �	����� �����	� 	 $+%=

�
��� � �
���������� ��� � �
��� ��� ���

! ��� "��� ���� �

�� ���� �����	��
� ������������ ������ ���
	�� �	����5����
�������� ��� ����� ��	������� 	 <**�

!#� �$�% �$�&'��(�)

#	������ �� �5�����	� 	 ��� <** ���������� ���������� 	���
� �	
�� .� ����� ���
	�� �	����5��� 	 ��� <** ���������
�� ��� 	���� 	 ��� ���� �	����5���
��� ������� �	 � 	
��������� ��� ���� ��������� � ������ 	� ����������	��

������� �� 1
� ���, ���������� �� �	 �<< ��
����� �� ,$�%�

	���
� .���	�� ��� ���	��� �� ��	
��� ���� ��������� ���

��������� � ������ ��� ���� 	 ���� �	����5��� ,$�%�
&�� ���� �	����5��� 	 ��������� � ������ �� ���

���� �� ��� ���� �	����5��� 	 ��� �	;���� ��	������ ��
���� ��
���� �� �5������
������� � ��
 ������ �������
�� � �	
� ;���������� ��� �	
 ��
���� ��� ������
������� �� �� ,$�% 	������	�� &�� �	
 ��
���� ��� ��

������ ������� �� ����� �	 ��� $�����-��� � �� �� �	� �������
�� ��� ����� &��� ������	� 	 �� ���� �	 ��� ���� 	 � ������
���� ���� ��������� �� ���	 �� ,$�% 	������	��

.� �	
 �	������ ��� ���� �	����5��� 	 ��������� �
������� ;����� ���� ������� 	��	�������� ��� <** �����
����� ��������� �� ����� 	�� ������� &���� ��� ����
�	����5��� 	 ��������� � ������ �� ����� �	 	� ����
���� ��� ���� �	����5��� 	 ��� ��� 	������	��
���	���� ������ ���� ������� 	��	�������� <���
�5�����	� 	 ��� ��� 	 	������	�� ������ ���
���� �		�
	 ��� ��;���� ��	������ �� ���� �� ���������� ���
	������	�� ���	���� ������ ���� ������� 	��	�������
����� �	 � �	
� &���� 	������	�� ������� �����������
��� ��5� �	
 �	 �� ������� ���	���� ���� �	
 �	� ���
���� 	 ��� $�����-��� ��� �	������ ������ �� ���� �� ���
����� '�� 	 ����� 	������	�� 	� � ������ ���� ���� ���������
��� �� �5������ �� ,$�% ����� '�����	������ ���� �������
	��	������� �������� �������� ��� ������ 	 �������
�	��� ��� ���	
���� �	�����	����� �	 ��� �	
 �����
������ ��� �������� ��� ������ 	 .����� "�������#
.����� ��A�C�$�����-��� ��� <��	<�0�	B�������	�� '��
	 ����� ��� �� �	�� �� �	������ ����� �� ����������� ��
��� �	������ ������ 	 	������	�� �� ��� �������
��	������ �� ���� �� ��

��2���� �$ �4�> ��&� �2' ���&3&�2$ ��3��$ �3��'�4&2? ��&2? �4��$&3 �*�2' �*�&2

���� /� � ���	 ������! ������������ �� ����

119

!#� *�(�	���

&�� ������� 	 � ���������� ���������� �� ���� �������� ��
�	������	� �	 ��� >(! ���������� ���	������ &��� ���������
��	
� �� ��� $0������ 7���	��� +��	 	 � ��������� �� ��
������ �� ��� ����� �	��� 	� ��� �������� ���
���
������� �������� �� � �	
 ����� � ��� ���� ����� >(! 	���
��� �	������ ��������� 	 ����� &��� �	��� �� 	��� ������� �	
������ ������������ ���� �����	��� ��	���� ������� ������
���� ��	�	��� �� ��2 �� �	�� �	��	��� ����	���� &���
������� ��	
� �� ��� <������� 7���	��� +��	 =<7+>� ��
������ �� ��� ��5���� �������� �� ��� ������� ��������
�� ��� �
	 �	
� 	��� ��� �	������ ��������� 	 ����� &��
	��	
��� ��	����� � �	�� ���	�	�� �������	�� �� ���
	��	
���� � �	
 �� �	�������� ������ ������ �� �������� 	
���� �� ������ ���� ��������� ��� ����� �� ����� ����� 	
������� �
������ ����������	��

��
����� �� -�� ����
���� ��� 0� �
� 	��0�� �� ����� ���	������
0� ����
 ���	� �
� ���� �	������ 0�����	 �� �	 ��� /���	 �	
�	������ ���� ���� �� ���	� �
� <������� 7���	���� *����� ��� ���
�
�� �	������ �� �
� ������� ����� �� 	����
���� ��� �
��������� ���	 ���� ��� ����� �� �����
 �	 � �
�� ��� ������
���	� �
�� �	������� ����	� �
� �������� ����	��� 0��	
=<7+> �� �
� ������� �� *����� ��� ���� ��� �����0�� ����
�	������� ���� ����

��
����� �� ����	� � �� �
� ��A� �	 ����� �� �
� ������� ���,��
�
�� �� �������� ����� ���	� �
� ��������	 �� � ��
����	�
�������
��

��
����� �� ����	� � �� �
� ��A� �	 ����� �� �
� ������� ���,��
�
�� ��� ����	������ ������ ���	� �
� ��������	 �� �
��
����	� �������
�� 9��� �
�� �
 ��

����� �� 7�� �	� ����
 �	 ���	 � �	 �
� ��������	 �� �	 �<<
��
����	� �������	�� � � �
��� � �� ��

	���
� &�� �	
�� �	��� 	� �
��� �� ��� �5������	� 	 ���
����� �� 	���	�� ����� ��� <** ���	����� ��
���
��������� �� ����� �� ���� ���� �� �
��� ������ �	��� ��
&�� 	��� �5�����	� ��
��� ��� ����� 	� �	

 ���	���
����� �� �	��� �� ��
���� ���� ��� ������� �	��� 	 ���
�	
 �� ����� �	 6�

&�� <** ���	����� ����� ������ ��������� � ��

������ �� � �	
 ���� ��� ������ 	 ���� ���� �� � �	��� �
�� ����� �	 	� �	�� ���� ��� ���	
���� �
���� &���� ���
�	
��� ����� 	 �����
��� ��
���� ��
���� � ��
 ������
����������	� ��� ����� �� � ��� ����
��� �� ��� ����
������ ����������� �� ��� �	
 ������ ���� �	���� !����
��� ��8� 	 ���� ������ ��� �� �	 ������� ���� �� �	� $�%�
��� ����� �	��� �� ��� �5������	� 	 ��� ����� ��
��	���� ��

&�� 	��	
��� �	�	����� 	��	
� �������� �	� D���� ��

��������� �� 8	 �	� ���	 �� � � ������� � �� ��

������� �� /���	 � ��	�������� ���	� ������	� ���� ���	 ��
���	� �
��
 ����
 �� ������� �
� 0��	� �	 �
� ����� 	��0��
�� ������ � � ���	������ 0� ����
 ��� ����	 0�

��
������

�����

������� � ��� �� � � � �

�
������

�����

������� � ��� ���

	���
� !����������� 	� �
��� ����� $+% ���	 $�%�
� ����

����
��� � ��������� �� � �
��� �� � �
���� ���
!������ ��� D7! �� $/% ��	�� 	� � � � �	 � � �� �� ��

� ��� � � ��� �	��� ������ 	 ���� ���� ������ ��� �

�	��������� �	���� ����� �	���������	�� <������� ���� �	

��� �������	� 	 ��� *7! �� $/% 	� � � � �	 � � �� �� ��

� � ��
������

�����

������� � �
��� �� �� � �
��� ���

��
9���� D���� �� � � �
��� �� �� � �� �� ���

� � �
��� �� � �� �� &�� ������ 	 ��� ���	���

�� ������� 	������� �� ������������ 	� ����� �	����

	� �
��� �� ��� 	� �
��� �� �� �� $0%� ��
.� �	
 ��	���� �	 ��	�� ��� �	��� 	� ��� ��������

������� 	 ��� <** ���������� ����������� �	�� ���� ���

�������� ������� �	���� *�)� �� ������ ������ ���	

�	���������	� ��� �	������ ��������� 	 ���� ���� ���� �� ���

	��	
����
� ��	�� ���� � ����� ����� �	��� ��� ��

	������� �	��������� 	��� � ������ 	 ��� �	������ ����

���������� &��� ������ �� ��� ��� 	 ��� ���� ��������� �	�����

�� ���� �������� ���� �	������
��� ��� ��������� 	� ��� ���

	 ��� ������� 	��	������� 	 �	
��

��
����� �� -�� � 0� �
� ��� �� ��� ���� �	���	�� ���	� �	

��������	 �� �
� �<< �������
�� ����	��� �� �
� ��� �� ��� ����

�	���	�� �� �
��
 �
� ��
����� �	� �����	� �	� ���� �	

0���	� �����	� �	��
��� ����	� � ���� ��� � �� ��� �� �
� ����

�
��
 �� 0��	� ����� �� ���� �	���	� �� 7�� � � ��� �� ���	�

� ��� �� �
� ���� D��� �0��� �� 0���	 ��������

&�� 	��	
��� ����� ���	
� �� �	 ��	�� �� ����� �	���

	� ��� �������� �������� ������ �� &��	��� -� �	���������

	��� ��� ���� ��������� ���� ����
���� ��� �� � ���

����� �� �	� � ���
��������

�	���� ����
	���
� &��� ����� �� ��	��� �� 	� ��� ��� �� � ��
� ���

��� ���� �
�
� � ��� ���� ���� �� ����� ����
 �� ���� ����

#	������ ��� �
	 ������ �	
�
 ��� � ������ ��� ����
�������� ���
��� �� ��� ���
���� ��� �� � �� .���	�� �	��
	 ����������� ������ ����� ������ ���� ���� ���������
�	�� ���� ���� ���� ��������� �	� �	

 ���� �	�
�	
 ��)� ����	�������� ��		���� ��� �� ��� ���� �������
�� ������ ��� ��������� 	� ��� ��� 	 ��� �������
	��	������� ����� �	 � ���� �� ���� ��� 	�� ��� �����
���� �� ����� ���
 �� ���� ���� !��������� �� ����	������
��	��� 	 ���� �� ������ ��� ��������� 	� ��� ������
������� 	 ��� ������� 	��	������� ����� �	 � ���� ��
���� ��� ��� ���� �	 �� ����� ����
 �� ���� ���� ��

������� �� 7�� �	� ��������	 �� �
� �<< ��
����	� �������	��

�	� � ���

	���
�)� ��� ��������� 	 D���� +�
� ���� �	 	���

�	������ ��� ���� ��������� �	����� �� ���� �������� ����

�	������
��� ��� �������� 	� ������ 	 ������� �	 � �	
�

.� �����	�� ��	�� ��� ��������� 	 ��� ���	��� �����

��� ���� �������� ���
��� �������� �� ��� ���
���� �	��

�� ��� �� ���	�� �	 ���

&��� $��2��3$&*2� *2 ����44�4 �2' '&�$�&��$�' �5�$�6�� 7*4� ,/� 2*� /� 6��3� 0880

1200

#	������ ��� �
	 �	
�
 ��� � ���� ��� ������ �� ���
���� �������� ���
��� �� ��� ��� ��	� ��� ���	����� ��
���� �� �� 	��	
� ���� ���� �	

 �������� �������� �� ��
����� �	 ��� ���� ��� 	 ��� $�����-���� &�� <** ���������
���� ������ �	
 ��
���� �� ������ ��	�� �	

 ��������
������� ������ &���� �� ���
��� ��� �
	 �	���������
������� 	��	��������� ����� �	 �	

� �	
 � ��������
�5����� 	�� ������� 	��	�������� 7����� � �
 ��� ��

���	�� ��� �	��� �	�����	��� 	��	��������� �������� ��
�	
�
 ��� �� ������������� �� ��� ���� �������� ���� ����
���� 	�
 � ��	 � ��

D�� ���� ���	�� ��� �	��� �� ��	����� �� ���� ������� ��
'��	 �	�� ���� ��� ���� ������� �� ��� �� ���� ���� ���
������� 	��	������� �������� �� 	�� 	 ��� �
	 �	
� ��
�	��� ����� ��� �	� �� � ���� 	 �������� ���� ���� &���� ���
���� ���� ���� ��� ��������� ������ ���� �	
 �� ��� ��������
����� �	���������	�
	��� �� �� ��� �	��� 	��	
���
������ #	����������� � �
 ��� �� ���	�� ��� �	���� ��

���� �	
�
 ��� � ������� ������� 	� ��� ���� ���� ��
��� �������� ���� ���� ������������� ���� 	�
 � ��	 � ��

.���	�� �	�� 	 �����������
� ��� ������ ���� ��
��� �������� ���� ���� �	

 ������ ��������� �������
��	�� �	
 �� &����

�� � �
 � � ��� �
 � �� � �� ���
��	� &��	��� +� 	� �	

�

����
���� ��� � �
 �
��
��
��

���
��

������� � ��� ��� ���

�	� �	
 ��

�� �
��������

������

������� � ��� �� � ��������� ���� ���

#	������� $2% ��� $3% ��� ����� $1%�
� ���

����
���� ��� � ��������� ��� � �� ���� ��

�
��
��
��

���
��

������� �
��������

������

�������� ���

D�� �� �	
 �	������ ��� �������� � ����� ��

� �
��
��
��

���
��

������� �
��������

������

��������

.� �	
 �	����� � 	� ���� 	 ��� 	�� �	������ ������
���� $�
 � ��� �
 � ��%=

� � ��

���� 2 $�
 � ��� �
 � �� � �%=

� � ������
 � �
 � ���
���� � $�
 � �� � �� �
 � ��%=

� � ������
 � �� �������
 � �
 � ���
���� ! $�
 � �� � �� �
 � �� � �%=

� � ������
 � ���

9���� #	�	����� �� �� �� ������� ������� ����� �� ���� 	
��� ��	�� 	�� ������ � � �� !����������� �� $4%� ���
��������� 	 ��� ���	��� �� ��	���� ��

�	�� ���� 	� ��� .������� <** ���������� ��� ��������
������� 	��� �� �������� ���� ��� �� ������ ��

�� ���� ��� � ���

��

����
���� ���
�

� ��������� ���
��

����
����� ����

����
 ��� � ��� �	
� ���� ��� ������ ������ ��� ��������
���� ��� ��2 � �+/ �

�� ��� �� ������� ���� &��	��� - ��� ���	 �� ��	��� 	�
��� .������� <** ��������� ����� $-% �� ����� 	 $+% �� ���
��		 ��	���

�� �	������	� �	 � �������� ������� �	��� 	 �� 	� <**�
�	�� ;** ��� !** ���� � �������� ������� �	��� 	
� � ���
���� � �� ��� ��8� 	 ��� ������� ������ ���� ���
����	������ ������ ������ ��� ������� 	 ��� �5�����	� 	 ���
���������� ����������� *����� ���� � �� ��� ��8� 	 ��� �������
������ ���� �������� ������� ������ ��� �5�����	� 	 ���
���������� �� �	�� ���
	���� ��������� ��� ��������� ��� ����
��@	���� 	 ��� ������� �� ��� ����� ��� 	 ���� ������� ��8�
���� ��� ��5���� �	������ ��8� 	 � ������ �+2 � &�� �����
	 � �� ��� �5������	� 	� ��� �������� �������� ����������
	��� ��	�� ��������� 	 ����� �� ������ �	 �� ���� �������
���� �� &�� ������� �������� �� <**� ����� �� ��
��� �����
�	 	� ������ ���� ���� �������� �� ;** 	� !**�

!#� �����+�& ���	�)

&�� ���	������ 	 ���������� ����������� ��� �� �	������
�� ����� 	 �� ����� �
	 ����������= &�� ���� �� ����� 	� ���
���� ������ 	 � �	
 �	 �� ������ �	�������� ��� ���
������� ������� ����� 	 ������� �� ��� �	
�� .� ���	��
��� ���� �������� �� ��� �����#�� -���	�� +��	 ��� ����� ��
�� ��� ��5���� ������ 	 ���� ���
��� ��� ������� ��� ����
������ 	 � ��
 �	
 ������� �� ��� ����� ��� ��� ������� ���
���� ��� 	 ���� ������ �� ���������� ' �		� �	��� 	� ���
�������� ������� ���������� ���� ��� ���������
��� ����� �
��
 �	
 	� � �	
 ���� ��� @��� ���	�� ������
����� ��
���������� ��� ����� ��	��� 	 ����� &��� �	��� ��
������������ �������� �	 ���������� 	 �	���	� ��������
����
��������� �	 �	� ������ �� ���� 	 � ����� ������ ���
����
���� � �	
 �	������� 	� ������� .� ����� ��� ;����	� ����
	 � ������ �� ��� ������ 	 ���� ���
��� ��� ������� �� ��
������ �� ��� ����� 	� ���������� ��� ��� ������� ��� ����
��� �� ���������� �� ���� �����	��
� �����8� ��� ��������
������� 	 <** �� �	������	�
��� 	���� ����������
���	������� ' ��������	� ����� 	 ������� ������ ��
��������� �� !����	� 0�

'� �� ��� ���� 	 ���� �����	��
� ������� 	�� ��������
�������� �����
������ 	� ��� ��� �	
�� &����	��� �����
� ������ �	
�� ��� ����� 	 ��� ����
���� ���	
�� �	
���� �	
 �� ����
���� � �� ��� �������� 	 ��� 	�����
����� &�� 	��	
��� ���	��� ��	��� ��� �������� �������
�	��� 	� <**�

������� �� ����	� �	 ��������	 �� �
� �<< ��
����	�
�������	� �����	� � ������ ����� �� � ��	, �� ������� ����
�� �
� �����#�� ����	��� ����� �� � 	���� ������ ����
�� �	
����� 0��	 ����	 0�

���� � ���� �����

�
�

��2���� �$ �4�> ��&� �2' ���&3&�2$ ��3��$ �3��'�4&2? ��&2? �4��$&3 �*�2' �*�&2

121

	���
� .��� ��� ���� ������ 	 � ��
�� ������ �	
 ��������

��� �	
 �� ������ �� ��� ���� 	 ��� $�����-��� ��� �� ������

���� ��� ��� � �����	���� ������ �	
� ��� ������� 9����

D���� � ��� #	�	����� � �� $/%�
� ���

����
��� � ��� ��

&����	��� � ��5���� 	 ���� ��� ���� ��� ��
������ ��	�� ��� ��������� ������ ������� ��� ��
��
������ �	
� �	���� ���� ��� ��5���� ��8� 	 ��� ����
������ 	 ��� ��
�� ������ �	
 �� �� ��� ��������� 	 ���
���	��� �� ������� ��	���� ��

&�� �������� ������� �	��� 	 <** �� �	
�� ���� ���� 	

;**�
���� ��� � �������� �������� ����� �	����� ��	�� ��

	��	
�=

���� � �� ��� �����

�
�

�� ��� �� ������� ��	��� ���� ��� �������� ������� �	���

	 !** �� ����� �	 ���� 	 ;**�

, ��-� ���� ���� �

�� ���� �����	��
� ������� ��������	� ������� 	� ���

���	������ ��� ��� ������� ��	������� 	 ��� <** �������

���� &�� <** ���	����� �� �	������
��� 	���� ����������

������ ���������� ���	������ 	 ����������
	�� �	����5���

���� �� ;**� !**� �#�!� �)**� ��� ()**� ;** ��� !**
��� ��� ���������� ����������� ���� �	�� ��	���� �	 <** ��
����� 	 ����� �	�� ��� ��� ������� ���� �����	��� �
��@	���� 	 	�� 	��� �� 	� <** �� �	������	�
��� ;**
��� !**�

.� �	����� ��� ������� 	 ���������� ����������� ��
��	����� 	� � ����� ��������� ������
���� ��� ��� �	
� ���
������� ��� ������ 	 ����� ��������� �	� ���� 	 ���
������� �	
�� ����� /�� /�� /�� /�� /�� ��� / ��	
 ���
������� 	 	�� ��������	� �5��������� 	� ��������

�	� ��� ������� �� ����� /�� /�� /�� /�� ��� /��
� ��������
����� �	
�
��� �	
 ��� �	� 6 �	 2� .� �	����� ������� 	� �
����	� 	 	�� �����	� ������� ������
����
� ������ ����
��� ��� �	
� ��� ������� &�� ������� ���� �� ����� 	 �������
��� ���	�� ���	 ��� ����� �	�����	����� �	 �	
 - �� �
���
��� ���� 	 	���� �	
�� '��	� ��� ������ ������� ���
���	���� ����������� ���
��� 	�� ��� 1/ ���� 	� ��� ���
�	
�� �5���� �	
 +� (������ ���	����� �	 �	
 + ����
������� ���	���� ����������� ���
��� � ��� �+3 ����� �	��
����� �� ���� �5��������� ��� ��5���� �	������ ������ ��8��
�� �� ����� �	 �+3�
���� ��� ������� ������ ���� ��������
������� �� ���	 �+3 ����� ��� ������ 	 ������ �� ��� ��������	�
�5�������� �� ������ .� ������ � ��� ��8� 	 3 ����� ��� ����
��� ��������� �������� 	�� ��� �	� 	�� 	 ��� ������ ��
���� ������

���� /� ���	�������� ���� <** �� ��� �� ����� 	
���	������ �������� �� ��� ������� �	
��
���� ()** ��

&��� $��2��3$&*2� *2 ����44�4 �2' '&�$�&��$�' �5�$�6�� 7*4� ,/� 2*� /� 6��3� 0880

���� 1� ��!������� �
����� �� �����
�� 	�!���������

122

�	�� '� ��	
� �� ��� ������
��� ()**� ��� �	
 �������
������ ������� $�	
 +% ����� �� ����� �����	� 	 ���
����
�����

���� /� ��	
� ���� <**� �	
����� �� �	� �� ��� �� �)**�
&��� �� �5������ ������
��� � ���������� ����������� 	 	��
���� �)** �� ��� ������ ���	����� �� ����� 	 ���	������
�������� �� ��� �	
�� �	�� ����� �� ������ �� &��	��� - 	�
<**� ��� ��5���� �������� ���
��� ��� ������ 	 �����
������ �	� ������� �	
� �� ���� ���� �� ���� � ����� 	�
- E)�����

���� /� �	������ �#�!
��� <**� '� �5������� �� �#�!�
�	
�
���� ���� �� �
��� ��� ���� 	�
���� ���� ������� 	
�
��� ��� ������� ������ �	 ����� ����	5������� �
��� ���
����
����� <**� 	� ��� 	���� ����� ��������� �������
��	�� ��� �	
� ����������� 	 ������ ������� 	�
��@����	� ������

���� /� �	������ <**
��� ;** ��� ��	
� ���� ��� �
	
���������� ������������ 	� ���	���� ����������� ������
�������� ��� �	�������� �� �������� ���� /� ��������� ��	
�
���� <** ��� !** ��� �	�������� �� ��������

���� / ��	
� ��� ������ 	 � ��������	� ��
���� ������

������� �� ��� ��� �	
� ��� �5�	��������� �����������

���
��� 	�� �	 1/ �����
��� ��� ��������� � � ���� *�����

���� ��� �������� ������� �	��� 	� �	�� ;** ��� !** ��

� � ���
������ ���� 	� <** �� ��� &��� �������� ��

������� ���
��� ��� ���������� ����������� �� ���� �����

������� �� � ������ ������ ����������	� ��
���� ��� ������

��8� ������� ��� ���� ������ �	 ������ ���� ������� ��8�

�������� ���� ��
��� ��� ������� ��� �5�	���������

������������ .� �	����� ��� ������� �������� �������

�������� �� ��� <**� ;**� ��� !** ���������� �����������

	��� �6�666 ����	��� ��	��� ��������� ������ � ����	� 	

	�� �����	� ������� ���� / ���	�������� ����
��� ������

��8� ������� ��� ���� ������ ���� ������� ��8� ��������
����

�� 	��� ��� ���� �� ���� ���� ���
	��� ��������� ������

�	������	� ���
	��� 	� �������� ������� ��� ��� ��������

�+2 � <** �������� ������ ������� ���� ;** 	� !**�

����� 0�� 0�� 0�� ��� 0� ��	
 ��� ������� 	 	�� ��5� ��� 	

�5��������� 	� ��� ���	������ 	 ��� <** ���������� ��

���� 0��
� �	����� ��� �������� ��������� 	 <**� ;**�

!**� ��� ()**� .� �	 �	� ��	� ������� 	� �#�! �� ����

����� ������ �� �� �#�! ���������� ��� �������� ������� ��

���������� �� ��� ������ 	 ������� ���� ��� �������

������ �� ��� ����� ��� �� ���� �	����� 	��� �� ��� ��8�

��2���� �$ �4�> ��&� �2' ���&3&�2$ ��3��$ �3��'�4&2? ��&2? �4��$&3 �*�2' �*�&2

���� 9� ��!������� �
����� �� �
����!��	
 	�!���������

123

	 ��� ����� ������������ ��� ������� *����� ���� ���

������� �	��� 	� <** �� ���������
� �
������ ���� 	� ;** 	�

!** �� ����������
� � &	 ���� ���������� ���� ���������
� ���

������ ������� ���� ��� �5�	��������� ����������� �� ���

����� ���
��� � �	 1/ �����
��� ��� ��������� � � ���� &��

�������� ������� ������� 	� ��� ������ 	 ������ �	
�

��	�� ��� ������� 	 ��� ���� ������ 	 ��� ��
 �	
� ���

�����	���
� ��	���� ��������	� ������� ����� �������

������� 	 �	
� ������� �	� � � � �	 4� .���� �����

�	
� ��� ���� ������ ���	���	�� ��� ������	� 	 ����

��������	��
� �������� ��	���� �	
 ���� ����������

���
��� ������ ��� �������� ����	��� &�� ��������� ���

��� ��� 	 ������ ����	�� �� ��	��� ����	���� �	� ����

������ ����	� 	 ��� �	
�
� ������� ��� �������� ������� ��

��� ������ 	 ������ ���
��� ��� ������� 	 ��� ���� ������

	 ��� ������ ����	� 	 ��� �	
 ��� ��� ���������� 	 ���

���� ��� 	 ���� ������� �	� ���� 	 ��� ������� �������

	 �	
�� ���� 0� ��	�� ��� ������� �������� ������� 	���

��666 ������ ����	�� ��� ��	
� ���� <** ��� ������ ������

�� ��������� ���� �	�� ;** ��� !**� �	�� ����� ����

��	��� ()** ��� �	
�� �������� ���������� ��� ��������

������� �	��� �� ������� ��� ����	� �� ���� 	�

��������� ��������
����� 0� ��� 0� ��	
 ��� ������� ������� ����� 	

������� �������� �� �� <** ��������� �� �	������	� �	 �#�!
��� ()**� �� �	������� ��� ������� ������ �5��������� ��
�������
��� ������� ���������� ������������ �� 	��� �����
����� �	 �	������ �	
� ���� ��� ������� � ��� ��� 	 ���
����� ��
���� ��� ������� ��� �������� �� ��� �	
� �� �������
���� ��� ��5���� �	������ 	����� ����� ��� ������
���
���������� ����� ������� ������� 	 ���������� �	������	��
��������� � ��������� �	������	� ���	������� ,� ���
	���� ����� � ����� �� �	 �	������	� �� ���� ������� ������
��� ��� ������ 8��	� �	� �� ����	������ ��� ���������
�	������	�� �����	���
� ������ ��������� ����	�� 	
�	������	� ������
���� ��� ��� 	 ��� ����� ����� ��
������ ���� ��� 	����� ����
����� �� 	�� ��������	��� �����
��������� ����	�� 	 �	������	� ���� �6�666 ������� ����

����
� ���� ��� ��@����	� 	 ������� ���	 ��� ������ ���
�	������ ��������	� ����� ��� ��� ������ ��� ������ &��
������ ��� ��	���� 	� ��� ������� ������� ����� 	 � ������
������� ��� ��������� 	 ��� ��������� �	������	� $��������
�� ��� ����	 	 ��� ��� 	 ��� ����� ����� �	 ��� ��5����
�	������ 	����� ����%� .� ��� 	�� �	
� �� ��� ��������	�� ��
����� 0�� ��� 0� ���� �� ��	��� ������ ������� ���� �� ��� �����
	� �	
 - �� �
��� ���� 	 	���� �	
�� '��	� �� ��	��� ���

&��� $��2��3$&*2� *2 ����44�4 �2' '&�$�&��$�' �5�$�6�� 7*4� ,/� 2*� /� 6��3� 0880

$��4� ,
3�!������� �� ���� �	�
������ ��������!�

124

������ ������� ��� ���	���� ����������� �	� 	�� �	 1/ �����
�5���� 	� �	
 +� ��
���� ��� ������ ������� ��� ���	����
����������� ���
��� 	�� ��� �+3 �����

���� 0� ��	
� ���� <** ��� � ������ ������� �������
����� ���� �#�!
��� ������ ��8�� ��� ����� ����� 	 ���
�	
� ��� �� �������� '
������	
� ������ �� �������
���	�� ������ ����� 	� ��� ����� �	
� � � ����������
���������� �������� ������ ������� ����� ���� �#�!� �� �	���
�� ��� �5����� 	 ���������� ��� ������ 	 �	�� 	���� �	
�
�+3 � &�� ������ 	������ ������� ����� 	 <** �� �������� ��
��� �5����� 	 �	
� ������� �� �
��� ��� ���� 	� �	
�
������� ������ �������� �#�!� 	� ��� 	���� �����
	���
���� ����� ����� �	
� ������ ����
����� ���� �����	���
�	
�� �������
���� ���������� ��� ������ 	 ��� 	���� �	
��
!��������� <** ��� � ���� ������ ������� ������� �����
���� ()**� �� ��	
� �� ���� 0��

���� 0� ��	
� ��� ������� ������� ����� 	 �������
	�������
��� <** ��� �)**� �	�� ���� �� <**� 	��� �
������ ������ ����������	�� ��� ������ ������ �� �	��������
��������� ��	�� ��	���� ������ �� ���	
�� �	 �����
����������	�� &��� ������� ��� ������� ����� 	 ������� ��
�	������	� �	 �)**�
����� �� ������� ������� �����������
���	���� ��������� ��� ������ �5��������� �� ��� ��� �	
��
�� �������� 	� ���� ����	�� ���������������� �	�����	���
���������� ���� ��� �	������� �	 ����	�� ������� ������ ��
�	������	� �	 �)**� &��� ������	��� ��������� 	 <**
	��� �)** �� ��	
� �� ���� 0��

;**� !**� ��� <** ���� ����� ��� ��	�� ��������
������� �	���� ���� �����	��� ��� ��������� ���
���
����� ����������� �� ����� 	 ��� �5��� ���� � ������ ����
���������� �� �	����� ��� ������ &����	��� ��� ������	���
���
��� ��� ������� ������� ������
��� ����� �
	
����������� ������ ����� �� �	������	� �	 ��� ����� �������
������ �5��������� ������ �	������	�� &����	��� ���
������� ������ ��	�� <**� ;**� ��� !** ��� �	�
�	�������

. ��--��" ��� ���� �����

�� ���� ������
� ���� ��������� � �	��� ����������
���������� ������ ������� <��	 <�0�	 $<**%�
���� �� �������
���� ��� �������
��� � �	
 �������� �������� �� ������	�� ��
�������� ��� ������ ����������� ���	��� ��
	���	��
�
������� 	� ��� ���������� ������������ .� ���� ��	
�
���� ���
	�� �	����5��� 	 <** �� ,$�% ���� �����	��� ���
�� ������ ����������� �� ���
	���
��� ����� ������� 	
�	
�� �� �	������	� �	 	���� ���������� ����������� 	
������� ��������� ���� �� ;����� *	��� *	��� $;**% ���
!������ *	��� *	��� $!**%� <** ��� ������ �������
��	�������� ��
��� �� � �	
�� �������� ������� �	����
&���� � �������8�� ���
	�� �	����5���� �������� ���
��� �������� ������� 	 ������� ���������� ���	������� ��
��� �	���� 	�
	�� �	����5���� � �� ��� �	��� ������ 	
������ �	
�� �� ��� �	���� 	� �������� �������� � �� ���
������ 	 ������ �	
� �� ��� ������� ��	�� ��� ����� 	 ���
��
 �	
� &�� ���� ���� 	 ��� 	����� ���� �� ���	��� �� ��
'�	�� ���������� ����������� 	 �	�������� ���������
;** ��� !** �	�� ��	���� �	 <** �� �������� 7	
�����
������� ;** �	� !** �� ������� �������� 	� ��� ��
	���	��
���
	����
���� ��� ������ 	 ���� � ������ 	������� ���
���� �� �	� ��	
� ��	�� � ������	� �	 �������� ��� ������ ��

����� ,� ��� 	���� ����� <** ��� �� ������� ���� ��

	���	�� ���
	���� �� ������	� �	 ����� �������� ��������
	� ��������� ��� ���������� �� �������� �	������

�������� �� ��
	���
���� �	 �	�� ���� <** ��� �� ���� �� �

��� ������� 	 �	���5��
������� ����� �� � ������
���	���� ���� ����� �	 �� ���	����� ����� ��	�� ��������
���������� ��������� �	� �5������ 	�� ��� ����� � �	
 ��
��� ������ 	 ������� ���	����� �	 ��� ���� ������� ��������
��
���� ����� <** ��� �� ���� �	 ������� ������� ��	��
������� �������� �� ��� 	�
������ 	 ���� �	 ��� 	����� �����

���� ���	 ��������� �	
�� ������ �� ��	
� �� ���� 0�� <**
��� ���	 �� ���� �� ��� 	�
������ 	 ������� �	� ��� �����
����� �	 ��� 	����� ����� 	 �
������� �������� ��
���
	���� <** ��� ���	 �� � �	����	� �� �	��� ����
���
	����
���� ��� ����
���� 	 ��� ���� ��� �	 ��
������ ��	�� �������� �	������ !��������� <** ��� �� ����
�	 ��������� ��������� ������ �	 � ���� ������ ���� &��
�	
�� �������� ������� 	 <** ��	�� ��������� �������
���	������ �� ���������� ����� ���� �� ����	���� ���
������� 	 ��	�� �	���	� ��������� �������� <** �� ��������
����� �������� �	 ��� ��	���� 	 @	� ���������� �� 	��������
��������
���� �������� ��	������ ��� �	������� 	�
������� #(9 �������

������ ���-���

&���
	��
�� ����	���� �� ���� �� ��� 9! ����	��� !������
�	������	� #'*<<* '
��� ##*�443/�1� ��� 9! '��
�	��� #	������ �-616+�66�+�606��

��*�������
�� 7� !����� #�)� !������� ��� *��� !������ F�)" *!G1666 !(D����

!����� ������	������	� ���
	�� &	�	�	�����H "���� 8	�E� ��	��
"������� "�������	�� '��� �443�

��� I� ������ F,� (����� !
������
��� ������� !�	�����H 8��� 1��	��
������ �	�� -0� �	� /� '��� �432�

��� .�I� ;���� ��� #�D� !���8� F&�� &	��� *	����� #����H 5� ������0���
�������	�� �	�� �� �	� -� ��� �32��41� ,��� �431�

��� #�)� !������� F&�� !(+ 7����(��	������ !
�����H 8+. ������� 5��
�	�� -/� �	� +� ��� �30�+6/� ���� �440�

��� I�)����	�� "� 7	��
		�� ��� "� "�D����� F"���	 #!�+
������	����� <����<���� ;������H "������� �������	�� �	�� +6� �	� �6�
��� ��� �1+2��1-3� �	�� �44/�

��� ����� #	��	����	�� "�����	 F"G� "����� C�������� �44��
��� #��� *�������� ����� ���� 1�� ������ $��
��������� �44-�
�	� '�!�� ����� ���
#"�������	�� "������� 8	�������#:!&& .0G� "
������

-���� =�8""8#:!&&#"�>� I��� �444�
�
� ��I�)	��� �� ���� F"������= ' >�����������!��	�� D	��� '���

���
	���H 8��� .����� ��� +4�-0� ���� �440�
���� J� &���� ��� >�D� ���8���� F;���������� '��	����� "�����:����

)���� 	� AD!� #	���������	� !
�������H 8��� 1��	�� �����#
����� �	�� /�� �	� 1� ��� 2+0�2-2� I��� �44+�

���� I� ;��� ��� D���)������ F<�������	� 	 "�����:����)�����
"��������� ������	������	� ���
	��� ����� 9��	�� ��� �	��
9��	�� &���� (��������H 8	�E� 5� ������� ����	��� �	�� +3� �	� ���
�442�

���� .�I� ;����� FA������ #������ ��	
 #	���	��H 8��� 1��	�� "�������
�	 ������0��� �������� �	�� -� �	� -� ��� �4/�+60� "��� �44+�

���� 7� !����� 7� !��� !�!� E������� ��� '�)� (������ F' *	����*	���
!��������� !������� 	� *������ ;����� �� .	���	�� !
������

��� A������ D�����H "���� 8	�E� ��	�� ����� �	 �������	�� I���
+666�

���� '� ;������ !� E������ ��� !� !������� F;����� ��� '������� 	 �
���� :������ '��	������H "���� $�. �8/�C..� ��� ���+� !����
�434�

���� !� E������ F,� ��� <������ ������������	� 	 ���� :�������H
5� 8	���	�����,�	� <������
 �	 �������	��� �	�� +� �	� -� ��� -�+1�
!���� �446�

��2���� �$ �4�> ��&� �2' ���&3&�2$ ��3��$ �3��'�4&2? ��&2? �4��$&3 �*�2' �*�&2

125

���� '�E� (����� ��� *�>� >�������� F' >�������8�� (�	����	� !������
'���	��� �	 ��	
 #	���	�C&�� !����� �	�� #����H "���� 8���
897C�C.� ��� 4�0�4+/� "�� �44+�

���� !�I� >	�������� F' !���#�	���� ���� :������ !����� 	�)�	���
���� '��������	���H "���� 8��� 897C�C.� ��� 1-1�1/1� I��� �44/�

��	� !� ��	�� ��� A� I��	��	�� FD����!������ ��� *��	���� "������
���� "	���� 	� (����� ���
	����H 8��� 1��	�� 9�����,�	�� �	�� -�
�	� /� ��� -10�-31� '��� �440�

��
� !� ��	��� F�	��� 	� #�����)�����:������� ��� >���������
!�������H 9���������� �	���= ����=GG

�������	��G�	��G
��������� I��� �440�

���� >� (�������� 7� '�������� ��� >� A�������� F' *������� ���
!������� !������� (�	�	�	��H "���� $�. �8/�C..� ��� �-���/��
'��� �441�

���� I�#�*�)������ ��� 7� K����� F�	�
= .	����#��� ���� .�������
���� :��������H "���� 8��� 897C�C.� ��� �+6��+3� "��� �441�

���� "� !�������� ��� >� A�������� F<������ ���� :������ 9����
;����� *	����*	����H 8��� 1��	�� 9�����,�	�� �	�� /� �	� -�
��� -20�-30� I��� �441�

���� (� >	���� 7�"� A��� ��� 7� #����� F!�����&��� ���� :�������= '
!��������� '��	����� 	� ���������� !������� (����� !
�������
���
	����H 8��� 1��	�� 9�����,�	�� �	�� 0� �	� 0� ��� 146�26/� ,���
�442�

���� !� E������ $	 �	��	����	� $������
 �� �������� 9�����,�� *�������
"����= '����	��.������ �442�

���� I�'� #	��� "�>� >	���� ��� '� <�������� F&����!��� !����������
���� !��������� 	 ��	
� �� 7����!���� ���
	����H 8��� 1��	��
9�����,�	�� �	�� 1� �	� -� ��� +2/�+30� I��� �443�

���� ;� !�������� ��� '� A����� F<������ ���� :������ '��	������ 	�
(������!
������ ���
	����H 8��� 1��	�� 9�����,�	�� �	�� 1� �	� +
��� �20��30� '��� �443�

���� E� &�	���	�� >�I� "������ ��� *� .������ F.����'��� ��������
&���� (������� ��� #���������������H 8��� 9�����,� �	�� ��� �	� 1�
��� �6�+-� �	��G;��� �442�

��	� D� E�����	��� @����	� �������� B����� 2' �������� $���������	��
��
 J	��= .���� ������������� �420�

��'(' �# ��	/��� +� B88- �
	
�"
� ��
 �� �
��

��
�
	���	��
����

���� ���! ��
 ���"
���� ��
��!�� � ��!�� � &����� �� C��
 ,::A� �
 ��
	���
��� �������� ��
 ��' �
��

 �� ��

'
����!
�� �� ��
	���	�� ��� 3�!���
� ����(
�

���� �� '�
)
� ���"
���� � ������
������ �
��(
� �"����� ��� �
�
��	� ���
�
��� ��	���
 �
�����
���� ���� ��� �!��
!
������� �� �	�
������
���	�����
� �� ��	
� �#��	�
� �
�#���� �
 ��
� ����
�� !
!�
� �� ��
 &����

0��(�/ ���/1 +6 B::- ������
� ��
 �$
	�
�
��

 ��
�
	�����	� ��� 	�!!���	�����
�(
���

���� ���! &����� &�������
 �� $
	������
+&&$-� 3�
����� �� ,:AA� �
 �
	
�"
� ��
 ��'
�
��

 ��
�
	���	��
����

���� ���! 4
����
���"
���� �� ,::0� �
 #��
� �� �� ��"����
'
"
���!
�� �����

�;�	�
����� �� &�6 3��(
�������� ��� ��)
���� ������ #��	� �

	��������
� �� ��
 ����#��
� ����#��
� ���
� ��
!(�
"
� �
���� �� ���

 �
�
������� ��

��
 ��;@888 �� ��!�� �� ����(�
����!��	
 ������
� 	�!���
��� �

D���
� ��
 '
����!
�� �� ��
	���	�� ��� 3�!���
� �����

���� ��
'�
)
� ���"
���� �� ,::A �� �� ��������� ����
����� �
 ��� �

�
�#���
� ���

 �� ���
���� �
 �� ���� � �
	���
�� �� ��
 �� 2�������
�	�
�	
 ���������� 3����� �#���� ��� 	���
�� �
�
��	� ���
�
���
��	���
 %����� (��(�
�"�	
 �� 	�!���
� �
�#��� ��� ��
 ��	���
	���
 ��
�#��	�
� ��� ����
��� �
 �� � !
!�
� �� ��
 &����

�'&� �# ����%/ �
	
�"
� ��
 �� �
��

 ��

�
	���	��
����

���� ���! ��
 ���"
���� ��
��!�� � ��!�� � &����� �� C��
 ,::A ��� ��

6� �
��

 ��
�
	���	��
����

���� ���! '�
)
�
���"
���� � ������
������ �� �� C��
 0888� ��

	���
��� #��� �� � ����#��

����

� �� ��

2
�#��� ��� �����	�� '
"
���!
�� '
����(
!
�� �� 4�	�

� 6����� ?����� $
�
	�!!���(
	������ �� 3��������� 6'�

 *$� �$�� (2$����($	 $	 �/(� $� �) �$�&1�(3 �$&(�4 &'���� 5(�(�
$1� �(3(��' (����) �� ����>;;	�!���
�����;�����	������;�����

&��� $��2��3$&*2� *2 ����44�4 �2' '&�$�&��$�' �5�$�6�� 7*4� ,/� 2*� /� 6��3� 0880

126

��������	
� ����	��������� �
�����	� ��	� ������
 ��	� ����	

����� �� ��	������ ������ ����

���������� 	
 �������� ��� �	������ ������������ ������ ����������� ���� �������� ������� ������������� �� � �!�� ���

��
����� �� ��	��� � !" ������� # $�
�%��� � !" �

�&��� # $�
�%��� � !

��������

'�
(�� �
�����	� ��������%� �	 ����
��� �	� ������ ���� ��(��� &��� �
����
�� ���� �	 &������	� ���)�������*������
� +)��, ����	����

��-���� �� %�	� �������%� %���%���� �&&��
����	�� ������
 ��	� ����	 +���,� � ��
�	��� &��&���� *��� �
�����	� ���
�&��	� �����	�� *��

������**��� ���*.
� �� ���� �*.
��	� ���� �	 "+!, ��-��	�
�%&��/��� �	�� �	 �������	� ��� ������ *���	���
����
�������
� ���	 �����

��������%� �* �-�����	�
�%&��/���� 0	 ���� &�&��� �� �	���1� ��� *�� ����	��������� �����
��� �	� �����	 �	 &&�� ��	� �	 ��� ����	
��

2� *����� ���� ���� ��� ��	� �����	�� �	 ���� &�&�� �� ������ 3� �	������ ����� ���� ���� �	
�%&�����	 �� ����� �
�����	� ���
�&��	�� �*

�-�����	�
�%&��/���� ���� ��� ���	�.
�	��� ������ ����	
� &��&������� 4��
�%��	����	 �* *���	���� �*.
��	
� �	� ��������	
� %�(�� ��� �	

�����
���� �
�����	� ���
�&��	� *�� ���� ������**��� �	� ����	��������� �����
��� � � � �������� �
��	
� 5�6� 7�� ������ ���������

#��$	���8 ������
 ��	� ����	" 9��� -��	�" :���	��������� �
�����	�" ����	
�

�	
����������

9��� ������&��� &�
(�������
��� 	�����(� ���

�/&�
��� �� �&&��� � ������� �* �����
�� ����	� ��� �����

�**��� �����
� ��������� �	 ��� 0	���	�� ������ 7 	%��� �*

	�� �&&��
����	� �
� �� �����	
� ����	�	� �	� %���%����

����
�	*���	
�	� ���� �	 ��� ������� �* ��� 	�����(�� ����

�	��� �
� �����
��� 9�� �/�%&��� �
� �&&��
����	� ����

�/&�
� ��� 	�����(�� �	��� ���� ��
� ;�� �* ���*.

��
����� ��� *��� ����� �* ��� ��	������ �	� �� ���� �� &������

&��*��%�	
� ����	���� �
� �� �	 &&�� ��	� �	 ��� �	��

����	� ������ 4��� ��-���� �)�������*������
� +)��,

%�
��	��% �� �*.
��	��� �&&�����	� ����
��� �	� %�	���

��%���� �����
�� �%�	�
�%&���	� ����� 7	 �%&����	�

�%&�	�	� �* �
� � %�
��	��% �� ��� ���*.
 �
�����	�

��������% ��&�
���� ��� �� ��� ��&� ��	(� �* ����
���

�	� �������

4�� *	
���	 �* � &�
(�� �
������ �� �	 ��&� ��	(�� ��

����
� ��� 	�/� &�
(�� *�� ���	�%�����	 *��% �%�	� ���

&�
(��� ������	� ���	�%�����	 ������ ��� ��&� ��	(�

��%� �* ��� %��� �%&����	� �	� ��������� &��&������ �* �

�
�����	� ���
�&��	� ��� *���	���� �*.
��	
� �	� ����

����	
�� �� ���
����� ������

� %�������� 4�� ��������� ��	(��	������ %�� �� ��������

��� �%�	� ��� ;��� �����	� ��� ��	(�	 � *��� %�		���

4��� �	���� ���� ��� &��*��%�	
� �
������ �� � ;�� ��

	�� �**�
��� ���	 � &������� %��������	� ;�� ����� ��

���	�%�� &�
(��� �� � ���� *����� ���	 ��� *��� ������ 0	 ����

&�&��� �� �� ���
�����
 	����	 �* *���	��� ����	 �� ���

%�/<%�	 *��� ����� &���
� =!>�

� &������ 9�� ����	��������� �����
��� ��� ����	
� �����

�� %������ �� ��� ��	��� �* ��%� �� ��(�� � 	�� ;�� ��

����	 ��
����	� �����
� �� ��� ����	���� ����� 4���

����	
� �� ����
��� ������� �� ��� �%�	� �* &�����
(

�**���	� ��-���� �� ��� ��
������

� �
'����� 0	 ������&��� 	�����(� ���� ����� 	%���� �*

�
���� ;���� ��� ��%� ��������� *�� � �
������ �� %�(�

��� �
�����	� ��
����	 �� ���� �%���� ��	
�� �� �� ������

���� ���� ��� ��%� �� �	-�� � ��
����� &�
(�� �� ��

��-�� � &�
(�� *�� ���	�%�����	 �� �� �	��&�	��	� ��

&������� �* ��� 	%��� �* ;��� �����	� ��� ��&� ��	(� 7

&���&�
(�� ���(
�%&��/��� �* "+!, �� %��� ����������

�
�����	� ��������%�
�	 �� �������
�����.�� �	�� ���

���������?�������&������� �
������� �	� *��%�������

�
�������� �������&������� �
������� %��	���	 � ������

�������� (��	 �� ��� ������ ��%� �� ��� �����% &���	����

*	
���	� 7 �������&������� �
������ ���	 ��� ���� ��������

��
�%&�� ��� ��%����%& *�� ��
� &�
(�� �	��
���	� ���

�������� &������� �* ��� &�
(�� *�� ���	�%�����	 ���� ���

��&� ��	(� 4�� &�
(��� ��� ���	 �
������ �	 �	
�����	�

����� �* ����� ��%����%&�� �/�%&��� �* �������&�������

�
������� ��� 2������� 9���)��	� +29), =��@>� ���*�

A��
(�� 9���)��	� +�A9), =B>� ������4�%� 9���)��	�

A�%&��� A�%%	�
����	� �# +� �, !@!#<!@��

 !B �@CCBD �DE � ��� *��	� %����� � � � �������� �
��	
� 5�6� 7�� ������ ���������

'008 � !B �@CCB+ �, ���

�������������
�%D��
���D
�%
�%

� A�����&�	��	� ������

�(���� �������) �����F�
�����/����� +���� ��	����,�

127

+�9), =#>� 9��%��5���� 9���)��	�! +99), =C> �	�

2�����A��� 9��� 2������� 9���)��	� +29�), =G>� 4��

�������&������� �
������� ��**�� �	 ��� %�		�� �	 ���
� ����

��
���� ��� ������ ������ ��%� *	
���	� 4���� ��� ���

%�H��
���� ����
����� ���� ��� �%&��%�	�����	 �* �������

&������� �
�������8

!� 4��
�%&��/��� �*
�%&��	� ��� �����% ������ ��%�8

9�� 29)� ��� ������
���
�%&��/��� �� "+�, ����� � ��

��� 	%��� �* ;��� �����	� ��� ��%� ��&� ��	(�

�������� �	 � 	%��� �* �
������� �
� �� �A9)�

�9) �	� 99) &��&���� �	 ��
�	� ������ ���
�%&��/���

�*
�%&��	� ��� ������ ��%� �� "+!,�

�� 4��
�%&��/��� �* %��	���	�	� � ������ ���� �* &�
(���

����� �	 ����� ��%����%&�� �	� ���
�%&��/��� �*

�%&��	� ��� %�/�%% �� ��� %�	�%% �	 ���� ����

&���� �� ��
� &�
(�� ���	�%�����	� 9�� � ;��� ��� ���(

�%&��/��� �* ��� �
������ &���� �� ��
� &�
(�� ���	��

%�����	 �� "+��� �,�

0	 *��%������� �
������� �
� �� $�.
�� ��	� ����	

+$��, =I> �	� ������
 ��	� ����	 +���, =�>� ��� �
����

��� ������ ��� ��� 	�	��%&�� -��� �	 � ��	� ����	 ������

$��	� ��
� �����
� �&&���	��� �* � ;��� ��� �	��	� �* �
�

� �
������ �� �� &������ �� ��� ;�� �	 �%�	� �* �����
�

&��&�����	�� �� ��� *��� ����� �* ��� ��	������� 4�� *��%��

����� �
������� �� 	�� %��	���	 � ������ ������ ��%� *	
�

���	 �	� ���� �� 	�� ��-��� �	� �����	� �%�	� ��� &�
(���

��������� *�� ���	�%�����	� 4��� ���
�� ��� �%&��%�	�����	

�%&��/��� �* *��%������� �
�����	� ���
�&��	�� �� "+!,�

%�(�	� ���% �����
���� *�� �%&��%�	�����	 �	 ������� �	�

��&�
����� ��� �	 �������� ����
����

������
 ��	� ����	 +���, =�> �� � ��
�	��� &��&����

*��%������� �
�����	� ���
�&��	� *�� ������**��� ���*.
�

���� �
������ ���� ���� �*.
��	
� ���� � ��� &���&�
(��

���(
�%&��/��� �* "+!, ���� ���&�
� �� ��� 	%��� �*

;���� 0	 �������	� �� ��� ������ *���	��� &��&������ ���	

����� �
������� �* �-�����	� ���(
�%&��/��� �
� ��

$��� 0	 ���� &�&��� �� ���� ���� ���
�	 ���� �� ������

���&��� *�� �
�����	� ����	���������
�		�
���	�� �	�

���� �� ����	�� �� ���
���� �* ����	
������ +��, �������

=! >� ���� � ����	
� ��	� ���	�.
�	��� ����� ���	 ����� �*

����� �
�����	� ���
�&��	�� �*
�%&������ ���(
�%&��/�

���� 4���� &��&������ �* ��� %�(� �� �	 �����
���� �
�����

�	� ���
�&��	� *�� ���� ������**��� �	� ����	���������

�����
���

��
���	 � �* ���� &�&�� ����;� ���
����� ���
�	
�&� �*

&�����(*��� +��, �������� � ��	����
���� �* �
�������

&��&���� �� ��������� �	� 6��%� =! >� 0	 ��
���	 @� ��

&����	� � �������� ������	 �* ��� *�� �����	� ����	�

��������� ;���� 0	 ��
���	 B� �� ������� ��� ����	
�

��	� �* ��� �	� &���� ���� �� ����	�� �� ���
���� �*

�� �������� ��
���	 #
�%&���� ��� *���	���� ����	
� �	�

���(
�%&��/��� �* ��� ���� ����� ����	��������� �
���

���	� ���
�&��	��� 7 �������� �%%��� �* ��� &��&������ ��

���� &�������� 9�	����� ��
���	 C
�	
���� ��� &�&���

�	 ���� ������� �� ������ ���������

0	 ������	� �	 &&�� ��	� �	 ��� ����	
� �* ���� �� ��

���
�	
�&� �* �� ������� .��� &��&���� �	 ��*� =! >� 2�

��.	� � ;�� �� ����� ���	� �	 �	������ �* ��%�� �* �� ���

�	���	�� �* ��%� ���	� ���� �	������� �� ��� �� ����� �	� &�
(��

������	� �����
� �� ���	� ������� 2� 	�� ��.	� ��� 	����	

�* � +��� ����	�� �	 ����	����
�%&�	�	� �* ���
�	
�&� �*

�� ��������

��������� �	 7 +��� ����	� �* � ;�� �� ��.	�� �� ���

%�/�%�� ��%� �	������ ���	� ���
� ��� ;�� �� �
���� �* ��

�� ������ �� �/�
��� ��� �������� �����

��� ����������!� ��� ��	��� ��� ����� 	%��� �* ���� �* ;��

� ���� ������ �� ��� �
������ ���	� ��� ��%� �	������ ��!� ����
A�	����� �	 �	������ �* ��%� ��!� ��� ���
� ��&����	�� � ���
&����� *�� ;�� �� 4��	 *�� �	� ��%� �	������ ��!� �� �
� ����

� � ��!� ���� ��� 	%��� �* ���� ���� ������ ���	� ����

�	������ �� ������� ���	 �� �-�� �� ��� 	%��� �* ���� ����

���� �/�� ��� �
������ �* ��� ;�� ��
����� �����
� �� ���

�������� ����� � �� 0	 ����� ������ *�� ��� � � ��!� ����
����������!� �� � ����� �!�
4�� ��.	����	 �* ��� ��� &����� �&&���� ���� ;�� � ��

������ �� ���
�	���	� �������� ����� �	� �����*���� ��&�	��

�	�� �	 ��� �������� ���� �* ��� ;�� �	� ��� &�
(�� �������

&�����	 �* ��� ;��� 7	 �
���� &����� �* � ;��� ��������

��;�
�� ��� �
��� �������� �* ��� �
������ ����� ���

�	���	��	��� �����
� �**���� �� ;�� � ������ �

����	� ��

��� 	%��� �* �
���� ;���� 0* ���	� � ��� &����� �* ;�� ��

��� �	���	��	��� �����
� ���� �**���� �� ;�� � �� �������

���	 ��� ����
���� ����� ���	 ��� ;�� %��
���� �� �� �
�����

4��� � ��� &����� �* � ;�� %�� �	
��� %���&�� �
����

&������ *�� ���� ;��� J��� ���� ��� ����� �* � ��� &����� �* �

;�� �� ������
���� �� ��� ������� �* � &�
(�� ����	��	� ��

��� ;���

4�� *������	� ��.	����	� ���� �� � *��%�� 	����	 �*

����	
� �	 ���
��� �* ����	��������� �������� 4�� ������

�� ��*����� �� ��*� =! > *�� � %��� �������� ���
����	�

��������� �	 $�.	� �������!� ��� �� ��� �%�	� �* �����
�

��
����� �� ;�� � ���	� ��� �	������ ��!� ����

��������� �	 ��� ��%� �	���	� � � ��&����	� ��� ����� �* �

�����	 ��� &����� *�� ;�� �� ��� �� � � �� �
� ���� ���

;�� ��
�	��	���� ��� ���	� ��� ��%� �	������ ���� ���

�,�, #������� -, ����� . �	������ �	��������	�� /0 1/!!/2 ���03��//

! J��� ���� *��%������� *��� -��	�� �	 �&��� �* ��� 	�%�� �� �
����� �

�������&������� �
�����	� ���
�&��	�� 4�� ��������% ��� � *��%�	�

�&&���
� ��%���� �� ���� ��� �	 *��%������� �
������� �� &���� ���

����� �* ��� �����%� �������� �� �	 �������&������� �
�������� &�
(��� ���

���	�%����� ����� �	 ����� ��%����%&��

128

$�.	� ������ �� �� ��� 	%��� �* ���� ����	��	� �� &�
(��� �	

;�� � ���� ������ �*��� ��%� � � �	� ��� �
������ ���	� ���

��%� �	������ ���� ���

J��� ���� ��������� �� �� 	�� 	�
�������� �-�� �� ������ ���
4��� �� ��
���� ���	� ���� �	������ �* ��%�� ��� �
������

%�� ����� �� �����	� &�
(��� ���� ������� ���	� � &������

��� &������ ������ ��� �����*���� �� 	�� 	�
�������� ��� ��%�

�� ��� ����� 	%��� �* ���� �
������ *��% ;�� � �	 ����

�	������� 2� ��� 	�� &��&���� �� &����	� ��� ��.	����	 �*

����	
� �	 �� ��������

��������� �	 4�� ����	
� �* � ;�� �� ��.	�� �� ��� %�	��

%% 	�	�	�������
�	���	� � � ���� �����.�� ��� *������	�

�� ��� &������� ��� &������ � ��� ;���

������ �� � %�/K � ����� �� �� ��L �!�

7� ��.	�� �	 ��*� =! >� � �
������ ���
� �����.�� �-� +!,

*�� ��%� 	�	�	�������
�	���	� ���� �*� � �� ���� �� ����	�

�� ���
���� �* �� ��������

4�� ����� ��.	����	
�&���� ��� *�
� ���� ��� ����	
�

�* � ����	��������� �
������ ����� 	�� %����� �� ���

��%� �� ��(�� *�� ��� .��� &�
(�� �* � ;�� �� ��� �
�������

�� ����� �� � %����� �* ���
%������ ��%� ���� �

;�� ��� �� ���� 	��� �� ����	� ��
����	� �����
� �� ���

����	���� �����

�	 ������� ������� ���� �����

��� ��� �����	���� &��&���� �� � *��� �	� �*.
��	� �
���

���	� ���
�&��	� *�� �� �	 ���%���� 	�����(�� &�&��� �	

�	���
�		�
���	 	�����(� �* &������� �����%�� 4�� ������ ��

��*����� �� ��*� =�> *�� � �������� ���
����	 �* ��� *�� �����

�**��� ���*.
� 0	 ���� &�&��� �� &����	� � �������� ������	 �*

��� *�� ����	��������� �����
���

A�	����� �	 ��&� ��	(�* ���	�%�����	 ���� �� �

��� ��

���
� ��
�	������� �� ��� ��� �
������� ��� � �� ��� �����

	%��� �* ;��� �	� ��� � � �� ��� �������� ���� *�� ;�� �� ���

�%�	 �� ��� �%������ �* ��� �������� ������ J��� ���� ��	
� ���

��� ;��� ����� ��� ��%� ��&� ��	(� � 	�
������
�	�����	�

�� ���� ��� �% �* ��� �������� ����� �� 	� %��� ���	 ���

���	�%�����	 ���� �* ��� ��&� ��	(� 0	 ����� ���� ��
� ;��

��
����� �����
� &��&�����	�� �� ��� ����	���� ����� ��� ���

�
������ �����	� � ������ �� ��
� ;��� 4�� ������

�����	�� �� ;�� �� $�� �� ����	 ���

$� � ��
�%�	

���

J��� ���� *�� �	� ;�� �� $� � !�

4�� ��� �
������ %��	���	� � ��	(�� ���� �* ��� �
����

;����
����� ��� �����&���� 2��	 � &�
(�� �������� �	� �* ��

����	�� �� � 	�� ;�� 	�� �	 ��� �����&���� ��� ;�� �� �����

�� ��� ���� �* ��� �����&���� 4�� ��� �
������ ������

������ � &�
(�� *��% ��� ;�� �� ��� ���� �* ��� �����&����

7	 �%&����	� �	� �����	
� *����� �* ��� �� ��� ��.	����	

�* � ��	�� 2� ��.	� � ��	� �� �	� ��	� ����	 ��������	

�	�����	� 	��� �* ��� �����
� ������ �� ��� ��� ;��� �	
����

�	 ��� �����&��� �� ��� ����� �* ��� ��	�� 9�� �/�%&��� � 	��

;�� ���� ��
�%�� �
���� ����� � ��	� �� �	 &������� ��

�%%�������� ����� �� ��� �����&���� �� �� ������ �	�� �	

��� 	�/� ��	�� ��
� ;�� ��
����� 	� %��� ���	 �	� �����
�

�&&���	��� �	 ��
� ��	�� 4�� �
������ ����
�� ��� ;�� ��

��� ���� �* ��� �����&��� *�� �����
� �	�
��
����� ���

���	$���� ��.	�� �� ��� 	%��� �* ���� ���� ��� ;��
�	

���	�%�� �	 ���
���	� �����
� �&&���	���� 0	 �	 ��� �
���

����� ���� ������	
� �� ������� ���� � ;�� %�� �/
��� ���

������	
� ���	� � ��	�� ��� ����� ��&����	� ��� ������	
�
�� ;�� � ���	� ��	� �� �	� ��� �������� �� ��� 	%��� �

���� �
����� �
������ *��% ;�� � ���	� ���� ��	�� 4��

��� �
������ ���� 	�� ����	 ���	�%�����	 �* ��� 	�/�

&�
(�� �	 ��� -�� *�� ;�� �� 	���� �������� �� ���� ���	

������ 2��	 �������� ��
�%�� ������� ���	 ����� ���	� ���

���	�%�����	 �* � &�
(��� ��� �
������ ���� 	�� &����%&�

��� ���	�%�����	 �� �	������ ����� *�� ��� �	� �* ��� ���	��

%�����	 �	� ���	 ����	� ��� �����
� �&&���	��� *�� ��� 	�/�

;�� �	 ��� �����&���� 7� ���� &��	�� �* ;�� � �� ����� �
����� ��

�� ����� ��
(�� ��� ���� �	� �* ��� �����

4�� 	%��� �* �/
��� ���� �* � ;�� ��	� �	 �������	 �� ���

������	
� ���	� � �����
� �&&���	��� �� ��
����� �	 ���

������� 	���� ��� ������ ��&����	� ��� ��&��
�	� �* ;��
� �	 ��	� �� 9������	� ��� �����
� �* ;�� � ���	� ��� ���

��	�� ��� ��&��
�	� ��
��
����� ��8

������ � ��������� ����� �@�
4������� �� ��.	�� �� ��� ������� ��&��
�	� �%�	� ���

��� ;��� ������ �	 ��	� �� 4�� ������	
� *�� ��
� ;�� ��

��
����� ��	� ��� 4���� ���� �	 ��� &������ ��	�� ��

*������8

����� � $��!�4������� !��� ������ !� �B�
J��� ���� ��� ������	
� �* ��
� ;�� ���	� ��� 	�/� ��	�

��&�	�� �	 ��� �%�	� �� ���
� ����� ;��� �/
��� �����

������	
�� �	 ���
���	� ��	�� ��
� ;�� ���(� ��
��
� &

���� ����� ;��� ��
�����&�	��	��� �	
�����	� ��� ������

�	
� *�� ��� 	�/� ��	�� 4�� ������	
��� �������� ���

��	��� �� *������� ��� � �� ��� ��1� �	 ���� �* ��� �������

&�
(�� ���� �� ������� ������ ���	� ��� �/�
���	 �* �

�
�����	� ��������%� 0� �� ������� �������� ���� ��	
� 	�

	�� &�
(�� �* � ;�� �� �
������ *�� ���	�%�����	 �	
� ���

;�� ��� �/
����� ��� ������	
�� ��� ��&��
�	� �� ������

���� ���	 ��� ��1� �* ��� ���� &�
(�� ������� M��� ��	�������

*�� �	� ;�� � �	� ��	� ��

 � ������ � �� ! �#�

 � 4������� � �� ! �C�
J��� ����� �� �&&���� �� $�� =I>� ��� ���� 	�� �� �

&��������%�	�� 5������ �� ��� �����
� ��
� ;�� ��

�,�, #������� -, ����� . �	������ �	��������	�� /0 1/!!/2 ���03��//

129

�/&�
��� �� ��
���� ���	� � �����
� �&&���	���� 4���

����� ��� �
�&�� �* �%&����	� ����	����� ���� $��

�� ���� ��
�����	 ����� �
������� �
� �� ��&��

��	� ����	 +���, =!!<!@> ���
� ��� ����� �	 ���

&��	
�&�� �* �����	�	� � -�	�% �� ��
� ;��� 9�������

��� *���	��� �	� ��� ����	
� ��	�� �* ��� ��&�	� �	��

�	 ��� ��1�� �* ��� &�
(��� ���� �
����� ������ �	 ���

;�� ������ ���	 �	 ��� ��1� �* ��� ������� &�
(�� ����

%�� &���	������ ������ �� ��� �
������� 4��� ���	�.�

�	��� �%&����� ��� ����	
� �	� *���	��� ��	�� ��	
��

�	 %��� 	�����(� �	
���	� ��� 0	���	��� ��� �������

&�
(�� ��1� �� %
� �%����� ���	 ��� %�/�%% &�������

&�
(�� ��1� =!B�!#>� ��
�	���� 	��(� $�� �	� ����

��� ���� 	�� ��-��� (������� �* ��� &&�� ��	�

�	 ��� ���	�%�����	 ��%� �* � &�
(�� �� �
����� �

���(
�%&��/��� �* "+!,� ��	����	� �� ������ �� ���&�

�� 	�����(� �	 ���
� ��� �
������
�		�� &���%�

(������� �* ��� ��1� �* � &�
(�� &���� �� ��� �
�����	�

�
���	� 4��� �� �%&����	� �	 ���%���� 	�����(� �����

��� ���	�%�����	 ��%� �* � &�
(�� ��&�	�� 	�� H�� �	

��� ��	��� �* ��� &�
(�� �� ���� �	 ���
�	������	 �	

��� 	�����(� 4��� �� ���� �%&����	� �	 �����
�	��/��

�
� �� �	 �	 74M 	�����(���	�%����	� 0' &�
(���

���� 77�#� ����� ��� �	� �* ��� &�
(�� �� 	��

(��	 	��� ��� ���� 74M
��� �* ��� &�
(�� ��������

�	 ������� ���� �� �

4�� �	������ �* ��� ����	
� �* ��� �� *�
�������� �� ���

*������	� ������ ������ ����� �� ��%%� ! �	� &����� �	

��*� =! >� 4��� ����� ������ �	� �� �����	 � ��	� �	 ���

����	
� �
������ �� � ;�� �� ����	 �� $�.	����	 @ ��

�	������	� �	�� ��� �
���� &������ �* � ;���

��!!� �	 &�� � � +� �� ������� 	
 ���� $��� 6	$ � +�	���

������ &�� �� � � +� �	�� ������� 	
 ���� ��� ���� ��� 6	$ ��

	�����	���� ����� ������ ��� ���� �������� +� ���,� &���
�
� +�

��� �������� �	�(�������� ���+�� ��� ���� ���
	��	$��� ��

�����'��
	� ��� ��

��������� �� � %�/K � ����� �� �� �
��L �G�

���� ��	��� +� ���,��� �	� +� � 	�����	���� +��� ����	�
	�

6	$ �� ��� ������ �� ��'��� +� �5� +�, �� +	����� +� � �
��

2� 	�� &��
��� �� ������ � ��	� �	 ��� ����	
� �* ���

��� �
������� ��	� ��� ��%%� ������ J��� ���� ���

�	���	� �* ��%� ���	 � ;�� � ��
�%�� �
����� � �� %�� ��

%�� 	��
��	
��� ���� ��� ����� �* ��� ��	� ����	 �����
�

�&&���	��� �* ��%� ����� ;��� 0	 ��� *������	�� �� &����

���� � ����� &&�� ��	� �	 ��� ����	
� �* ��� ��� �
������

�	 �� �����	�� ��
�	������	� � � ����	��	� �� �	�� � �����

�* ��� &������� ��%� �	���	��� 4��� ����� �� ��� ��� �* ��� ��%�

�	���	�� ����
��	
��� ���� ��� ����		�	� �� ��� �	� �* ���

�����
� �&&���	��� �* ;����

��������� "	 $�.	� # �� ��� ��� �* ��� ��%� �	���	���

���	� �	 �/�
���	 �* ��� ��� ��������%� �� ���
� ���

�
������ �	�� �����	� �	� ;�� �	� ����	� �����	� �	������

$�.	� #� �� ��� ��� �* ��� ��%� �	���	�� �� ���
� ��� �
���

���� ����	� �����	� ;�� �� J��� ���� ��� ��� # �� ��� 	��	

�* #� *�� ��� ;��� �� ���� ��� ������ ���	� ��� �/�
���	 �*

��� �
�������

��!!� �	 7�� ������ ���������� +� 6	$ � �� �� �**

�������� $��� ���� ��� ����� +	���� � �
�� 	��� �
 ���

���� �������� � �� �� $��� 6	$ � +�	��� ������ +��	���

�	 ��� ��� #�

$����	 7��%� ���� ;�� � ��
�%�� �
���� �� ��%� �	���	�

� �� ��� ��!� ���� �! � �� � �� �� ��� ��%� �	������ ���	� ���
�

��%� ;�� 8 � � ��
����� ��� ��	� ����	 �����
� �&&���	����

A�	����� ���
��� ���	 � � ���� 	��
��	
��� ���� ��� ����� �*

��� �����
� �&&���	��� �* ;�� �� ���� � � � �!� J��� ��� ��%�

�	������ ��!� ���� ���
� �� � &��� �* ��� ��	� ����	 �����
�

�&&���	��� �* ;�� 8� ���� 	��
�	������ �� ��� ����	
�

�/&����	
�� �� ;�� �� 3	 ��� ����� ��	��
�	����� ���

��� ���	 � �
��	
���� ���� �!� ��� ����� �* ��� �����
� �&&���

�	��� �* ;�� 8� J��� ��� ��%� *�� ���
� ;�� � ��� �� ����

��*��� ��
����	� �	� �����
� ���� �	
��� ��� �	���� ��%�

�	������ ��!� ��� ���	� ���
� ;�� 8 ��
����� ��� ��	�

����	 �����
� �&&���	���� A������� ��� ����	
� �/&����	
��

�� ;�� � �� ������ ������� ���	 � �
��	
���� ���� ��� ����� �*

��� �����
� �&&���	��� �* ��%� ����� ;��� 4�� �����%�	� �*

��� ��%%� *������ *��% ���� ����������	�

�

9��% ��%%� �� �	 ������	� �	 &&�� ��	� �	 ���

����	
� �/&����	
�� �� ;�� �� �����*���� �	� 	���� �� �	��

�	����� � � �
� ���� � � � #� 4�� *������	� ��%%� *�����

��%��� ���
���� �� 	��� ��
�	����� �	 ������	� ��� &&��

��	�� J��� ����� �	 &����	� ��� &&�� ��	�� �� 	��� ��

�	��
�	����� ��� �	������� �* ��%� ���� ���
� �-� +G, �� �	

�-������ 0	 *�
�� ��� &&�� ��	� �	 ��� ����	
� �� �
������

�� ��%� �	���	�� � ���	 ��������� �� � ����� �� �� �
��� 4��

*������	� ��%%� &������� � ��%&��
�	�����	 �	 � �	 �����

�� �
����� ��� �-����� �	 �-� +G,�

��!!� �	 9
 6	$ � +�	��� ����� �� ���� ������� � �� ����

����� ������ �	�� �� �� ��� ���� ��� 6	$ ������� �����

������ ��� �������� +� ���,� ���

��������� �� � �� �� �� �� �
�

� �

$����	 J��� ����� �* ��������� �� � ����� �� �� �
��� ���	 ���

;�� �/&����	
�� ��� ������
��� ����	
� �� ��%� �	���	� ��

A�	����� �	� ���
�	��
���� ��%� �	���	�� �! �	� �� ���
�

���� ����	� �� #�� A�	����� �	 �	���	� �* ��%� �� �! � �� ���

�,�, #������� -, ����� . �	������ �	��������	�� /0 1/!!/2 ���03��//

130

���� �8 ��� � �� �
� ���� ;�� � �� ��
����	� �����
� ��

��%� �	���	� ��

$��	� ��� �	������ ��!� ��� ��� �%�	� �* �����
� ��
�����

�� ��� ;�� �� ���� �!�� ����� � �� ��� ���� �* ��� ��	(�

A������� ���	� ���� ��%�� ��� ;�� �� ��
����	� �����
� ��

��� ����	���� ���� �� ������� 4����*���� ��� ������
���

����	
� �/&����	
�� �� ��� ;�� 	��� �	� ��%� �	 ��� �	������

��!� �� �� 	� ����� ���	 ���� �/&����	
�� �� �� 	��� ��%�

�! � #��

���� /8 ��� � �� �
� ���� ��%� ;�� ����� ���	 � ��

��
����	� �����
� �� ��%� �	���	� ��

$��	� ��� �	������ ��� ���� ;�� � ��
����� 	� �����
� �� ����

4����*���� ��� ����	
� �/&����	
�� �� ��� ;�� �	
������

�*��� ��%� � �� �	�� 	��� ��%� ��� 4��� ��� ������
���

����	
� �/&����	
�� �� ��� ;�� 	��� �	� ��%� �	 ��� �	������

��� ��� �� 	� ����� ���	 ���� �/&����	
�� �� �� 	��� ��%�

�� � #��

4�� ����� ���
���� ��������� ���� ��� ������
��� ����	
�

�/&����	
�� �� � ;�� ���	� �	 �	������ ��!� ��� �� �-�� ��
��� ����	
� �/&����	
�� �� ��� ;�� 	��� ������ ��%� �! ��

��%� ��� �/���&�����	� �� ��� �	������� ������	
�	��
����

��%� �	���	�� ���� ����	� �� #�� ��� �����%�	� �* ��� ��%%� ��

&������

�

#�����! �	 7�� �** �������� +��	��� �	 ��� ���� 	

�� �������� $��� �� ����� +	��� 	� ��� ������� �
	� 6	$

� ����� +��

� � �
�: � $���� ��� !���� !�

�
�I�

����� � �� ��� ����� 	%��� �* �
���� ;��� �	�: �� ��� �%

�* ��� ������� �* ��� ��� ;����

$����	 9��% ��%%� !� �� (�� ���� ��� ����	
� �* ���

��� �
������ �� ��.	�� �� �-� +!, �� ��	��� �� � �
��

��	
� �� ���� &���� ��� ������% �� �����	� ���� � �
� �

��: � $���� ��� !���� !����� 5� ��� �����%�	� �*

��%%� �� ���� &&�� ��	� �	 ��� ����	
� �� ���
��� �	��

�* ��� ��%� �	���	� �� ���
� ;�� � ��
�%�� �
����� � ��

����	�� �� #� 4����*���� �	 ���(�	� ��� &&�� ��	� �	

��� ����	
�� �� %�� ���%� ���� ;�� � ��
�%�� �
���� ��

�/�
��� ��� �	���	� ���� ��%� ����� ;�� ����	� ��
����	�

�����
��

��� �;� �� ��� ��%� �	���	� %��(�	� ��� ����� �* ��� ;��

�����
� �&&���	��� �* ;�� � �*��� �� ��
�%�� �
���� ��

��%� �	���	� � �� J��� ���� �;� ����	�� �� #�� 4����*���� *��%

��%%� @� �	 ����� �� �����%�	� ��� ����	
� ��	� �� ��.	��

�� �-� +!,� �	� 	���� �� �	��
�	����� �	������� �* ��%�

���� �;� � *�� ��� ;� 9��� ! ����� ��� ��%� �	������ 	���

�	���������	 *�� � ����	 ;�

4� &���� ��� �����%�	� �* ��� ������%� �� .��� �����	 ���

����� ��	� �	 ��� ����� �����
� ��
����� �� ;�� � ���	�

��� ��%� �	������ 	���
�	���������	� 4��	 �� �/&���� ���

����� ��	� �	 ��� *��% �* �-� +G, �� ������ ��� ����	
�

��	��

J��� ���� ��� ��%� �	���	� � � %�� �� %�� 	��
��	
��� ����

��� �	� �* � ��	� �	� ��� ����� �* ��� ����-�	� ��	�� ���

; �� ��� ��	� ���
� �� �	 &������� �� ��%� �	���	� � � ��

���
� �	�� �/�
��� �� ��%� �	���	� � �� ��� ��� ��%� �	���	� ��
%��(��� �	� �* ��	� +; � �� !, �	� ��� ����� �* ���

����-�	� ��	�� 9�� �	� ;�� 8 ���	� � ��	� � �	 ���

�	������ 	���
�	���������	� ��	� �-�� +@, �	� +B,� ��

�����

����8��� � $8�!�4������� !��� ��8���� ��8��� !�
���

7� ����	 �	 9��� !� ���%� ���� ��� ��%� �	���	� ���	 ;�� �

��
�%�� �
����
��	
���� ���� ��� ��%� �	���	� ���	 ��%�

;�� 8 �� ���� �� ����� ��� �����
� �&&���	��� ���	� ��� ; ��

��	�� ��� <� ��	��� ��� ��� �* ;��� ���
� ��
���� �����
�

���	� ��� ��%� �	������ ���� �!�� ���� �
��� ;�� � ��
�%��

�
���� �	� ���	� ��	� ; � ��%������� ��� <+ ��	��� ��� ���

�* ;��� ���
� ��� ������ �� ��� ��� �
������ ���	� ���

��%� �	������ �� � ���� ���� +�
	�� ;�� � ��
�%�� �
���� �	�

���	� ��	� ; � J��� ���� ;�� � �� 	�� �	
���� �	 ������ �*

����� ��� ���� ��	
� ;�� ����� ��
���� ��� .��� �����
� �&&���

�	��� �	�� �	 ��� +; � !,�� ��	�� 0* ��� ��%� �	���	� � �

��	
���� ���� ��� �	� �* � ��	�� ���	 ��� ��� <� ���� ��

�%&�� �	� ��� ��� �� ! ;��� ���� ����	� �� ��� ��� <+�

A�	����� ��� ��%� �	������ ���� �;� � ���	� ���
� ;�� �

��
����� ; ��	� ����	 �����
� �&&���	������ 4��� ��%�

�	������
�	 �� �&��� �	�� ����� ����	�������8

+!, ���� �!�8 4��� ����	������ �	
���� ��� &��� �* ��� ; ��

�,�, #������� -, ����� . �	������ �	��������	�� /0 1/!!/2 ���03��//

9��� !� 7	 ����������	 �* ��� ��%� �	������ 	���
�	���������	�

131

��	� ���	� ���
� ��� ��� ;��� ����	��	� �� ��� ��� <� ����

�� ������ �� ��� ��� �
������� �%%�	� �-� +�, ���� ���

����� ;����

�! � �� �
!

�

�
8�<�

K$8�!�4�����; � !��� ��8�; �

� ��8�; � !�L �! �
+�, ��!� �;�8 4��� ����	������ �	
���� ;� ! ��	�� �*

�/�
���	 �* ��� ��� �
������ ������	� �� ��	� +; � !,�

A�	����� ��� ��%� �	������ ���� ���!� ���	 ��	� +; � �, ��

�	 &�������� �%%�	� �-� +�, ���� ��� � ;����

���! � �� �
:

�
�!�4�����; � �� !��

�
!

�

��
8�!

��8�; � ��� !

�

��
8�!

��8�; � �� !�

�%%�	� ��� ����� ���� ;� ! ��	�� ����		�	� ����

��	� ; � !�

�; � �! �
:

�
�;� !�� !

�

��
8�!

���8�; � ;� !�� ��8�; ��

�
:

�

�;� !

��!

4�����; � �� !� +!!,

+@, ��;� �;� �8 4��� ����	������ �	
���� ��� &��� �* ���

+; � ;,�� ��	� ���	� ���
� ��� ��� ;��� ����	��	� ��

��� ��� <+ ���� �� ������ �� ��� ��� �
������� �%%�	�

�-� +�, ���� ��� ����� ;����

�;� � �; �
!

�

�
8�<+

$8�!�4�����; � ;� !��

�
!

�

�
8�<+

��8�; � ;�� !

�

�
8�<+

��8�; � ;� !�

�!��
A�%��	�	� �-�� +! ,<+!�, �	� ��	� �-� +#, �� �����

�;� � �� �
:

�
�;� !�� : � $�

�

�
!

�

�
8�<�

$84�����; � !�

�
:

�

�;� !

��!

4�����; � �� !�

�
!

�

�
8�<+

$84�����; � ;� !�

�
��� !���� !�

�
�

!

�
����; � ;� !�

�����	� *�� +;� !,�

�;� !� � ��;� � ��� �

:
�

: � $�

:

�
!

:

�
8�<�

$84�����; � !�

�
�;� !

��!

4�����; � �� !�

�
!

:

�
8�<+

$8�4�����; � ;� !�

�
��� !�

:
��� !�� !

:
����; � ;� !�

�!@�

N��	� �-� +�, ���� ����� +;� !, ��	�� �* �����
� *�� ;�� ��

�	� ��	
� ��� ��&��
�	� �* � 	���� �
���� ;�� �� � ��

����

��������� �;� � � ����; � ;� !�� $��;� !�

� $�

�;
��!

4�����; � �� !� �!B�

J��� ��	
� ��� �������� ����� ��� &��&�����	�� �� ��� �������

�����	�� �� ��� ;��� �� ����	 �� �-� +�,� �	� ��	
� ��� �%

�* ��� �������� ����� �� 	� %��� ���	 ��� ��	(���� �� �� �����

�� �
$�

:
� �!#�

N��	� ��� ����� �	� ��	� �-� +!@, �� �������� *�� +;� !,

�	 �-� +!B,� �� ����

��������� �;� � � ����;� � ���� $�

:
�: � $��

�
$�

:

�
8�<�

$84�����; � !�

�
$�

:

�
8�<+

$84�����; � ;� !�

�
$�

:
��� !���� !�� ����; � ;� !� $�

:
� !

� �

N��	� �-� +C, �	� ��	
�: �� ��� �% �* ��� ������� �* ��� ���

� ;���� �� �����

��������� �;� � � ����;� � ���� $�

:
�: � $��

�
$�

:
�: � $����� !�� $�

:
��� !���� !�

� ����; � ;� !� $�

:
� !

� �

�,�, #������� -, ����� . �	������ �	��������	�� /0 1/!!/2 ���03��//

132

N��	� �-� +!#,� �� �����

��������� �;� � � ����;� � ���

�
��
�
�: � $������ ��

�
��� !���� !�

� ����; � ;� !� $�

:
� !

� �

��%&��*��	� *������ �	� 	���	� ���� ��� ����	
� ��	�

���
��� ��� &&�� ��	� ���	 ����; � ;� !� �-��� �

�� ����

��������� �;� �

� %�/ � �� �;� � �� �
�: � $���� ��� !���� !�

�

� �� �

�!C�
7� ���
���� �������� ����� �	 ��%%�� � �	� @� ;�� � ����

�/&����	
� ��� ����� ����	
� ���	� �	 �	������ ���� �;� � *��
��%� ;� 4����*���� *��% �-� +!C, �	� ��%%� !� ���

�����%�	� �* ��� ������% �� &������

�

2� 	�� &��
��� �� ���� ���� ��� ����	
� ��	� ����	 ��

4�����% ! �� ����� �� ���������	� �
��� ����� ��� ��	� ��

�
����� %��� 7��%� ���� � ;�� � ��
�%�� �
���� �� ��%�

�	���	� � �� ���
� ����
��	
���� ���� ��� �	� �* �
�����	

��	� ; �	� ��� ����� �* ��� ��	� +; � !,� ��	
� �����

;��� �	 ��� �����&��� ���� �� ������ .���� ;�� � ��
�%��

��
(������ �	���	���� 7��%� ���� *�� �	� ��%� �	���	� �� � �
��� � ����� �* � ;���� �	
���	� ;�� �� ��� �
����� 7����

���%� ���� ��� �%%����	 �* ��� �������� ����� �* ��� ���

� ;��� �-��� ��� ��&� ��	(���	�%�����	 ����� �� ��	
��

�� � �$��:��� ��	
� ;�� � ��
�%� �
���� �� ��%� � �� ���

��&��
�	� �� ��� ����� �* ��	� +; � !, �� � ��� ���

��&��
�	� �* ��� ��� ����� ;��� �� ��� ����� �* ��	�

+; � !, �� �-�� �� � 7��%� ����� � ;�� � ���
� �� 	��

�
���� �*��� ��%� � � �	� ��	
� �� 	�� �	
���� �	 ��� � ;����

��� �
���� ���	� ��� ; �� ��	�� 7��� ���%� ���� ;�� �

�/
����� ��� ������	
� �� +�� !, ���	� ��� �����
� �&&���

�	��� �	 ��	� ; � �����	� �� � ���� �* 4�����; � �-�� ��
+�� !,� 9��% �-�� +#,� +C, �	� +�,� �	� ����	 ;�� 8
�	

���	�%�� � %�/�%% �* $8�� ��� !� ���� ���	� � ��	�

����	 �����
� �&&���	���� 0	 ��� �����
���� ��*��� ;�� � ��

������ �� ��� ��� �
������� ��
� �* ��� ����� +�� !, ;���

���� ��
���� ���� %�/�%% �����
�� ��	
�� ���
%������

����� 	��� ;�� � ��
����� �����
� �� ����	 ���

� �

�
8��

$8

�
	

��� ��� !���� !�

�

� �: � $���� ��� !���� !�
�

J���	� ���� �������� � �� �-��� 1���� �� �� ������� ����.��

���� ��� ��	� �� �/�
��� %�� �� ��%� � � �� � ��

"	 %�!&������ �� ����� ���������

4���� ! �%%���1�� ��� ���(
�%&��/���� *���	��� �	�

����	
� ��	�� �* ������� ����	��������� �
�����	� ���
��

&��	�� ���� ����	� �� ���
���� �* �� �������� 2� %�����

*���	��� ��	� � �����(��	 �	� ������ ��� %����
� (��	

�� ��� �������� 9���	��� 5�	� +�95, =B>� 4�� �95 ��

��.	�� �� ��� %�/�%% ��**���	
� �	 ��� 	��%���1��

�����
� ��
����� �� �	� ��� �
���� ;��� ���� ��� &�������

�	������� �* ��%�� 0	 ���� ������ 4 �� ��� ��1� �* ��� �������

&�
(�� ���� %�� &���	������ ������ ���	� ��� �/�
���	 �* �

�
�����	� ��������%� ��
��� ���� � �� ��� ��1� �* ��� �������

&�
(�� ���� ������� ������� ���	� ��� �/�
���	 �* ��� �
���

����� 4�&�
����� 4 � �� ��	
� �	 %��� 	�����(� �	
���	�

��� 0	���	��� ��� ���� %�H����� �* ��� &�
(��� ��� �* %
�

�%����� ��1� ���	 ��� %�/�%% &������� ��1� �* � &�
(��

=!B�!#>� 4�� &��&������ �* ��� ��� �
�����	� ���
�&��	�� �	

4���� ! �/
�&� ��� �	� $�� ��� ������� �	 ��*� =!G>� J���

���� ��� ����	
� ��	� �* $�� ������ ���� �� ������� ���	 ���

�,�, #������� -, ����� . �	������ �	��������	�� /0 1/!!/2 ���03��//

4���� !

7
�%&�����	 ������	 �
�����	� ���
�&��	��

�
������ A�%&��/��� 9���	��� ����	
� ��	� *�� ;�� �

:'� =@>

2������� 9���)��	� =�> "+�, "+�,
�

�
�

�

��

���*�A��
(�� 9���)��	� =B> "+�, ��
��� !��

�
�

�

��
6����� A��
(=!C> "+�, � �

�
�

�

��

9��%������� 9���)��	� =C> "+�, �4 � �
�

�
�

�

��

$�.
�� ��	� ����	 =I> "+!, 4� ��
�: � $��4 � ��� !���� !�

�
�

� !
��

�
!

�

���� !�

������
 ��	� ����	 =�> "+!, @�
�: � $���� ��� !���� !�

�

133

�	� ������� �	 ��*� =!G>� 4�� ���������	 �* ���� ��	� ��

��%���� �� ��� &���* �* 4�����% !�

4�� :'� �
������ ������ ��
� �
���� ;�� �	 � ��	��

����	 *�����	� �	� ������ �	 �	.	�����%���� �%��� �%�	�

�* ���� &��&�����	�� �� ��� �������� ���� �* ��� ;�� =@>�

N��	� ���� ;�� %����� ��� :'� �
������ �� ���� �� �	���

���� ���� �	� �	������ �* ��%� ������� �%���� ��� 	��%���1��

��**���	
� ������	 ��� �����
� ��
����� �� �	� ��� �
����

;��� �� �/�
��� 1���� 4�� �95 �* :'�� �����*���� �� 1����

4�� ����	
� �* :'� �� ���� 1��� ��	
� � 	���� �
���� ;��

����	� ��
����	� �����
� �	���	��	����� �� ��� ����	����

����� ��
��� ���� :'� �� �	 ����� �� 	�� �	 �%&��%�	�����

�
�������

29) =�>� 99) =C> �	� 6����� A��
(=!C> ���� � ���

���� �* ��� ����	
� ��	�� �������� ��� ���(
�%&��/���

�* ����� �
������� �� ������� ���	 ����� �* ��� �	� $���

6����� A��
(��� �	 �95 �* �	.	��� �	� �����*����

�		�� ��
�	������� �� �� � *��� �
������� 4�� �95

�* ��� 29) �
������ �� "+�, �	� ���� ��� ������ *����

	��� +��� �/�
� �/&������	 *�� ��� �95 %�� �� *�	� �	

��*� =!G>,� 99)� �	 ��� ����� ��	�� ��� � ����� �����

���� �* ��� �95 �	� ��� �� ���	�.
�	��� %��� *����

�������� 99) ��-���� &������
 ���
���������	 �* ���

������ ��%�� �	� ���� ��� � ���(
�%&��/��� �* "+�,

��	����	� �� ���� �*.
��	� ���	 ��� �� $��� 0	 *�
��

�	�� ��� �	� $�� ��� �*.
��	� ���� �	 "+!, ���(

�%&��/���� 4���� ! ����� ���� ��� ��� ������ *���	���

&��&������ �	� � ����� ����	
� ��	� ���	 $�� �����

��&�
�����
�	������	� ���� 4 �� ��&�
���� %
� �������

���	 ��

'	 %���������

������
 ��	� ����	 +���,� � ��
�	��� &��&���� *����

�*.
��	� �	� ������ �%&��%�	����� �
�����	� ���
�&��	�

��� �����	�� �� �����*� ��� 	�-� 	���� �* ���%����

����
��	�� &�&��� �	 �	���
�		�
���	 	�����(� �* &�������

�����%�� 0� %�� ���� �� ������� ���&��� *�� *��� �
�����	�

�* ������**��� ���*.
 �	 ��� 0	���	��� 0	 ���� &�&��� �� &����	�

� �������� ������	 �* ��� *�� �����	� ����	���������

;���� 2� &���� ���� ��� ����	�� �� ���
���� �* ��
������� �	� ������� ��� &&�� ��	� �	 ��� ����	
� �/&����

�	
�� �� � ;�� ������ �� �	 ��� �
������� 2� ���� ����

���� ��� ��	� �����	�� �	 ���� &�&�� �� ������

3� �	������ ������� ���� ��� ��� ������ *���	���
����

�
�������
� �	� � ���	�.
�	��� ������ ����	
� ��	� �	

�%&�����	 �� ����� �
�����	� ���
�&��	�� �* �-�����	�

�%&��/��� �
� �� $��� 2���� *���	��� �� �	 �	��������

��������� ����� ��� &��
��
�� ������	
� �� �	 ��� ��	� �	

��� ����	
� ���� *��� �
������� ��� ���� �� &������� 4���

����	
�� �� ��.	�� *�� �� ������� �	 ��*� =! >� ��� �

����
� �����	� �	 ��� ��1� �* ��� &�����
(�**��� 	�����

�� ��� ��
������ *�� �������%�
�%%	�
����	�� 4��� &�&��

����� ����� ���� ��� ��������	
� ��	�� ��� �� �	 �����
�

���� �
�����	� ���
�&��	� *�� ���� ������**��� �	� ����

�	��������� ���*.
�

�����(����!����

4��� ���(��� �&&����� �	 &��� �� J�9 A7���� ���	�

AA����IB!C! �	�N�7�� 9��
�A�	���
� 9@ C �� ��� # !�

 ���������

=!> �� ������� 7	 �	��	����	� 7&&���
� �� A�%&��� J�����(�	�8 74M

J�����(�� ��� 0	���	��� �	� ��� 4���&��	� J�����(� 7�����	�2������

�����	�� M7� !��G A� �8 �
�����	�� &&� � �<�C!�

=�> 7� $�%���� �� ������� �� ���	(��� $����	 �	� �	������ �* � *���

-��	� ��������%� '��
����	�� �* 7AM �0:A3MM� 7���	� !�I��

&&� !<!��

=@> 7��� '���(�� ��:� :�������� 7 ��	�����1�� &��
����� �����	�

�&&���
� �� ;��
�	���� ��� ��	��� 	���
���� '��
����	�� �* 0���

0J93A3M� 9����	
�� 0����� !���� &&� �!#<��B�

=B> ���� :������	�� 7 ���*�
��
(�� *��� -��	� �
��%� *�� �������	�

�&&��
����	�� '��
����	�� �* 0��� 0J93A3M� 4���	��� A�	����

!��B� &&� C@C<CBC�

=#> 6�'� :����� ��M� 6�	� �� A��	�� ��������%� *��� -��	�8 � �
�����

�	� ��������% *�� �	�������� �����
�� &�
(�� ����
��� 	�����(�� 0���

4��	��
���	� �* J�����(�	� # +#, +!��G, C� <G B�

=C> $� ���������� 7� 6��%�� �*.
��	� *��� -��	� ��������%� *�� &�
(���

����
��� 	�����(�� 0��� 4��	�
����	� �	 J�����(�	� C +�, +!��I,

!G#<!I#�

=G> ��A��� 5�		���� �� O��	�� 29�)8 2�����
��� *��� �������� *���

-��	�� '��
����	�� �* 0��� 0J93A3M� ��	 9��	
��
�� A7�

!��C� &&� !� <!�I�

=I> M� ���������� :� 6�������� �*.
��	� *��� -��	� ��	� ��.
�� ��	��

����	� 0��� 4��	��
���	� �	 J�����(�	� B +@, +!��C, @G#<@I#�

=�> ���� ��	����� 7� '���(�� �� ����� 9��� �	� �*.
��	� &�
(�� �
�����

�	� �	 ���%���� 	�� ���(�� '��
����	�� �* ��� 0	���	����	�� '�������

�	� $��������� '��
����	� ��%&���%� A�	
	� M�/�
�� � � &&�

C�@<C@!�

=! > $� ���������� 7� 6��%�� ����	
������ �������8 � ��	���� %���� *��

�	������ �* ���*.
 �
�����	� ��������%�� 0��� 4��	��
���	� �	 J���

���(�	� C +#, +!��I, C!!<C�B�

=!!> �� 9����� J���� �	
�����������-��	� �	� ����	���� �����
�� ���&8DD

�����
�������D;���D
�-���%��

=!�> �� 9����� 6� ��
����	� ��	(������	� �	� �����
� %�	���%�	�

%����� *�� &�
(�� 	�����(�� 0��� 4��	��
���	� �	 J�����(�	� @

+B, +!��#, @C#<@IC�

=!@> :�'��� 7������� :� 6�������� 7 �������� �	� �
������ ����&�	� &�����

��� '��
����	�� �* 7AM �0:A3MM� '��� 7���� A7� !��C� &&� !@!<

!B!�

=!B> �� 4��%&��	� :� M������ �� 2������ 2������� �	���	�� ���*.
 &�����	�

�	�
����
�������
� 0��� J�����(+!��G, ! <�@�

=!#> 0� 2��H�H�� 7�0� �������� '��*��%�	
� ����� �	 �
�%����
�&����

����
��� *�� %���&����
�� ����� ����
��	�� 0��� ���	�� �	 ����
���

7���� �	 A�%%	�
����	� !G +C, +!���, !!GI<!GGI�

=!C> �� O��	�� 6�����
��
(8 � 	�� ���*.

�	���� ��������% *�� &�
(��

����
��	� 	�����(�� '��
����	�� �* 7AM �0:A3MM� '�������&����

'7� !�� � &&� !�����

=!G> $� ���������� 4��*.
 �
�����	� �	 &�
(�������
��� 	�����(�8 �	�������

�����	� �	� �%&��%�	�����	� '�$ ������� N	�������� �* A���*��	���

��	�� A�1� �	� !��C�

�,�, #������� -, ����� . �	������ �	��������	�� /0 1/!!/2 ���03��//

134

Proceedings of the IEEE Workshop on High Performance Switching and Routing
Dallas, Texas, USA, May 29–31, 2001

On Scheduling Real-Time Traffic under Controlled Load Service in
an Integrated Services Internet

Hongyuan Shi and Harish Sethu
hyshi@io.ece.drexel.edu, sethu@ece.drexel.edu

Department of Electrical and Computer Engineering

Drexel University

3141 Chestnut Street, Philadelphia, PA 19104-2875

Abstract— The controlled load service defined within the
IETF’s Integrated Services architecture for QoS in the Internet
requires source points to regulate the traffic while the network
provides a soft guarantee on performance. Packets sent in viola-
tion of the traffic are marked so that the network may give them
lower priority. In this paper, we have defined the requirements
of a scheduler serving packets belonging to the controlled load
service. Besides efficiency and throughput goals, we define an-
other important requirement to bound the additional delay of un-
marked packets caused due to the transmission of marked pack-
ets. For any given desired boundα on this additional delay, we
present the CL(α) scheduler which achieves the bound while also
achieving a per-packet work complexity of O(1). We also pro-
vide analytical proofs of these results on the CL(α) scheduler. The
principle used in this algorithm can also be used to schedule flows
with multilevel priorities, such as in some real-time video streams
as well as in other emerging service models of the Internet that
mark packets to identify drop precedences.

Index Terms— Controlled load service, scheduling, real-time
traffic, Integrated Services architectures.

I. I NTRODUCTION

With the rapid evolution of the Internet as a commercial in-
frastructure, there have been increasing demands for differen-
tiated services based on user and/or application requirements.
Real-time traffic, in particular, has stringent requirements of
delay and bandwidth guarantees which are not satisfied by the
best-effort service provided by much of today’s Internet. The
guaranteed service model in the Integrated Service architec-
ture defined by the IETF seeks to achieve this by making per-
flow reservations using the Resource Reservation Protocol, and
then expecting schedulers in the routers to abide by the reserva-
tions [2]. One of the challenges in providing these guaranteed
services is in the management of reservations and scheduling
states corresponding to thousands of traffic flows that may all
be active at the same time. Therefore, the Integrated Services
framework also specifies a more scalable option called thecon-
trolled loadservice [3]. This paper is concerned with design-

This work was supported in part by U.S. Air Force Contract F30602-00-2-
0501

ing a scheduler for routers which serve packets belonging to
this service category.

Controlled load service is distinguished by the fact that it
seeks to provide users with a quality of service similar to that
in a lightly loaded or unloaded network, and without requiring
or specifying a target upper bound on the delay or loss prob-
abilities. This quality of service is assured through capacity
planning and admission control, rather than through per-flow
management during packet scheduling and forwarding. The
idea behind this service model is that many real-time appli-
cations do receive adequate performance and quality of ser-
vice in a lightly loaded network, eliminating the need for very
strict performance guarantees. Each user/application provides
an estimate of its traffic specifications,Tspec, and the service
provider admits the traffic based on whether or not support-
ing it would still keep the network “lightly loaded”. When the
user exceeds the traffic specifications, the service obtained by
the excess packets degenerates to the best-effort service. Con-
trolled load service allows a scalable means to achieve the re-
quired quality of service since it does not require the network to
distinguish between flows beyond the admission control phase.

Packets sent by an application in excess of theTspecagreed
upon by the user and the service provider are marked by a traf-
fic policer at the entry point into the network. As per the defini-
tion of the controlled load service, these excess marked packets
receive best-effort service while the unmarked packets receive
service similar to that in a lightly loaded network. To preserve
the generality of our solutions, we refer to these excess packets
as simplymarkedpackets and the rest asunmarkedpackets.
Such marking of packets to indicate their level of importance
for dropping policies within the network is also used in the
Differentiated Services model defined by the IETF [1], as well
as in some applications requiring compressed video transmis-
sions where some packets are more important to the quality of
the playback than some other packets.

While scheduling algorithms have been widely studied for
best effort traffic as well as for guaranteed services, schedul-
ing strategies for merged packet streams with different ser-
vice requirements have not been studied within a theoretical

135

framework. In the following, we discuss the requirements of
a scheduler in an Internet router providing controlled load ser-
vice to real-time traffic with marked and unmarked packets.
Section II presents the requirements of such a scheduler and
Section III presents the CL(α) scheduler which satisfies these
requirements. Section IV provides brief theoretical analysis.
Section V concludes the paper.

II. REQUIREMENTS

Our primary goal in the design of a scheduler for controlled
load service is to preserve the spirit of the controlled load ser-
vice. Certainly, it would be inappropriate to add implementa-
tion complexity to the service by adding per-flow management
in the routers. Therefore, it is desirable that the scheduler use
some simple discipline such as first-come-first-served, while
aggregating packets from all flows into the same queue await-
ing service by the scheduler. Note that, in a lightly loaded net-
work with regulated traffic, a first-come-first-served schedul-
ing discipline is expected to be more than adequate. Also, by
such a strategy which places all the packets in the same queue,
the packets within the same flow, marked or unmarked, are de-
livered in order.

Secondly, the controlled load service packets do not have a
delay or bandwidth specification. Therefore, a scheduler can-
not make decisions based on delay requirements as in tradi-
tional guaranteed-service schedulers such as virtual clock or
weighted fair queueing. Instead, the capacity planning phase,
based on theTspecprovided by the applications, is responsible
for ensuring that the packets can receive a delay approximat-
ing that in a lightly loaded network. Therefore, it is safe for the
scheduler to assume that the unmarked packets of one flow will
not affect the unmarked packets of another flow to the point
that the network appears congested to any flow. However, the
marked packet arrival characteristics are not part of theTspec
and therefore, unregulated. The scheduler does have to ensure
that the impact of too many marked packets on the quality-of-
service received by the traffic flows is kept under control within
a certain acceptable bound. Since delay is the primary QoS
parameter for real-time traffic, we can define the scheduler re-
quirement as follows: the scheduler should guarantee that,for
any unmarked packet, the additional delay caused by marked
packet transmissions is no more thanα. In other words, if
an unmarked packet, in the absence of marked packets, could
be forwarded with a delay of∆, then the delay of the same
packet in the presence of marked packets should be no more
than∆ + α. The quantityα may be defined by the router or
may be a negotiated quantity between service providers.

Finally, we do wish to send as many marked packets (best-
effort packets) as possible without violating the above require-
ment on its impact on the delay of unmarked packets. This
requirement, while ensuring that unmarked packets are never
dropped or delayed beyond a certain point, is non-trivial to

achieve, especially in the absence of per-flow management.
Note that in the absence of per-flow tracking and management
of packet arrivals, the scheduler cannot predict with sufficient
precision the new packet arrival characteristics, and therefore,
cannot know whether sending a marked packet at a certain in-
stant of time can be a cause for additional delay for unmarked
packets at some later time.

In the following section, we describe the CL(α) scheduler
for Controlled Load service, which meets all of the above re-
quirements, in addition to being simple enough to implement
with an O(1) per-packet dequeuing complexity.

III. T HE CL(α) SCHEDULER

The CL(α) scheduler maintains a single first-come-first-
served queue for all arriving packets. Marked as well as un-
marked packets are all added to the tail of the same queue
in order of their arrival times. The CL(α) scheduler removes
packets from the head of the queue for service, but marked
packets may be dropped at the server if sending it introduces
an unacceptable extra delay to unmarked packets. The sched-
uler’s responsibility is to ensure that the delay of an unmarked
packet does not increase by more thanα due to the transmis-
sion of a marked packet.

We define extra delay of an unmarked packet as the addi-
tional delay caused by the transmission of marked packets. Ob-
viously, when a marked packet is scheduled for transmission,
all the unmarked packets in the queue suffer an extra delay.
Furthermore, some of the extra delay is also “passed on” to
the unmarked packets which arrive after the transmission of
the marked packet. This is because, in a first-come-first-served
queue, a packet’s delay depends on the time when its prede-
cessor is served. Thus, the extra delay caused to one unmarked
packet can cause an extra delay to unmarked packets that ar-
rive later as well. However, the extra delay of a newly arrived
packet is not merely equal to the extra delay suffered by its pre-
decessor, and can actually be less than that of its predecessor in
the queue. This is best illustrated by considering an unmarked
packet that arrives during a period of low congestion when the
outgoing rate is larger than the sum of the incoming flow rates.
However, the unmarked packet ahead of it in the queue, i.e.,
the predecessor packet, may have arrived in the queue during
a period of heavy congestion when the queue length was large
and thus may have a large extra delay associated with it. As-
sume that the queue length is now reduced to the level that the
total transmission time needed for the whole queue is less than
the extra delay of this predecessor packet. Under these cir-
cumstances, the newly arrived packet will not inherit all of the
delay suffered by the predecessor packet, but only part of it.

Since the CL(α) scheduler needs to control the extra delay of
unmarked packets, the system has to keep track of the changes
in the extra delay of each unmarked packet. A naive method for
this is to simply use an extra delay counter for each unmarked

136

Initialize: (Invoked when the scheduler is initialized)
HeadED= 0;
TailED = 0;

Enqueue: (Invoked when a packetP arrives)
if (P is unmarkedAND EDDQueueIsNotEmpty) then

if (UMPD < TailED) then
AddToEDDQueue(TailED− UMPD);
TailED = UMPD;

else
AddToEDDQueue(0);

end if;
else if(P is unmarkedAND EDDQueueIsEmpty) then

if (the server is transmitting a packet)then
V = PacketBeingTransmitted;
if (V is marked)

HeadED= UMPD;
TailED = UMPD;

else
if (PreviousHeadED> UMPD) then

HeadED= UMPD;
TailED = UMPD;

else
HeadED= PreviousHeadED;
TailED = PreviousHeadED;

end if;
end if;

end if;
AddToEDDQueue(0);

end if;
AddPacketToQueue(P);

Fig. 1. Intialization and Enqueueing routines of the CL(α)
scheduler

packet. The scheduler in such a case would have to check each
of the extra delay counters before sending a marked packet.
Upon sending a marked packet, it would have to update each
counter by the transmission time of the marked packet. Ob-
viously, this scheme has a processing delay proportional to the
number of unmarked packets in the queue, with the potential to
severely limit scheduling efficiency when the queue lengths are
large. The CL(α) scheduler, however, achieves significantly
better scalability in terms of the processing delay, with an O(1)
per-packet work complexity. Fig. 1 and 2 present a pseudo-
code description of the CL(α) scheduler.

We denote the first unmarked packet in the queue (i.e., clos-
est to the head of the queue) as theunmarked head, and the last
unmarked packet in the queue (i.e., closest to the tail) as the
unmarked tail. In the CL(α) scheduler, theextra delay(ED) of
an unmarked packet at a certain instant of time is defined as the
cumulative additional delay experienced by the packet because

Dequeue:
while (QueueIsNotEmpty) do

P = PacketAtHeadOfQueue;
if (P is unmarked)then

RemoveEDDHeadfrom EDDQueue;
if (EDDQueueIsNotEmptyAND

EDDHead< HeadED) then
HeadED = HeadED− EDDHead;

else
if (EDDQueueIsEmpty) then

PreviousHeadED= HeadED;
end if;
HeadED= 0;
TailED = 0;

end if;
TransmitPacket(P);

else
if (EDDQueueIsNotEmpty) then

if (HeadED+ TxTime(P) ≤ α) then
HeadED = HeadED+ TxTime(P);
TailED = TailED + TxTime(P);
TransmitPacket(P);

else
V = UnmarkedHeadOfQueue;
Drop all packets ahead ofV ;
RemoveEDDHeadfrom EDDQueue;
if (EDDQueueIsNotEmptyAND

EDDHead< HeadED) then
HeadED = HeadED− EDDHead;

else
if (EDDQueueIsEmpty) then

PreviousHeadED= HeadED;
end if;
HeadED= 0;
TailED = 0;

end if;
TransmitPacket(V);

end if;
else

TransmitPacket(P);
end if;

end if;
end while;

Fig. 2. Dequeueing routine of the CL(α) scheduler

of marked packet transmissions, if the packet is scheduled for
transmission at exactly that time instant. Instead of keeping a
counter for each unmarked packet, the CL(α) scheduler main-
tains a record of the extra delay for the unmarked head and
tail packets, denoted byHeadEDandTailED. Both of them are
updated whenever a marked packet is transmitted while there

137

are unmarked packets in the queue. Meanwhile, the scheduler
stores a quantity called theExtraDelayDifference, for each un-
marked packet in the queue. The extra delay of any packet at
any instant of time can be calculated fromHeadEDat that in-
stant of time and the value of theExtraDelayDifferenceof the
packet. In the following, we define the the quantityExtraDe-
layDifferenceand the procedure to compute the extra delay of
any packet.

Suppose all the arriving unmarked packets are labeled as 0,
1, 2, . . . , in order of their arrival times. Letai be the arrival
time of packeti. Denote the departure time for packeti by di,
and the extra delay of packeti at timet asEDi(t). If ai < di−1,
note that packets labeledi and i − 1 are both in the queue
during the time interval betweenai anddi−1. The additional
accumulated extra delay due to marked packet transmissions
during this time interval is the same for both of these packets,
i.e., forai ≤ t ≤ di−1, we have,

EDi(t)− EDi(ai) = EDi−1(t)− EDi−1(ai)

Thus,

EDi(t) = EDi−1(t)− [EDi−1(ai)− EDi(ai)] (1)

Define ExtraDelayDifferencei or EDDi as EDi−1(ai)−
EDi(ai), denoting the difference in the extra delay between
packeti and(i− 1) at time instantai. Now, from (1),

EDi(t) = EDi−1(t)− EDDi, (2)

Therefore,EDi(t) can be obtained fromEDi−1(t) andEDDi.
For each unmarked packet in the queue awaiting transmis-

sion, there is anEDD value associated with it. The scheduler
keeps theseEDD values in a separate queue, denoted byED-
DQueue. The head of this queue, denoted byEDDHeadcon-
tains theEDD value of the unmarked head. Similarly, the tail
of this queue, denoted byEDDTail contains theEDD value of
the unmarked tail. Let packeth be the unmarked head at time
t. The next unmarked packet in the queue is packeth+1, with
a corresponding entry in the EDD queue equal toEDDh+1.
Note from Equation (2) thatEDh+1(t) can be calculated from
EDDh+1 and theHeadEDat the time instant when packeth
is transmitted. This quantity now becomes the newHeadED
after packeth is transmitted and packeth + 1 is the new un-
marked head.HeadED, thus, always contains the extra delay
corresponding to the current unmarked head.

The value ofEDD for each unmarked packet is set at the ar-
rival time of the packet. Let packetk be the unmarked tail at
timeak+1 when packetk+1 arrives. Packetk+1 at this instant
of time will have an extra delay which is the same or different
from that of packetk. Now, EDk(ak+1) is available inTailED
maintained by the scheduler. One needs to find the real extra
delay of packetk + 1, and then setTailED andEDDk+1. In
this paper, we do not describe the details of how we compute

this real extra delay and the complete rationale behind it. The
pseudo-code in Fig. 1 and 2, however, describe the CL(α) algo-
rithm completely. Here, we briefly explain some variables used
in the algorithm and which are important to the understanding
of the algorithm itself.TxTime(P) is the transmission time for
packetP . UMPD(t) is the unmarked packet delay, defined as
the time taken to transmit all the unmarked packets which are
in the queue at time instantt. In our algorithm, we assume
that unmarked packets cannot pre-empt the transmission of a
marked packet. Therefore,UMPD(t) includes the remaining
transmission time of the packet currently being served even if
it is a marked packet.

It can be readily verified from the algorithm thatEDk+1(t) is
no more thanEDk(t). Thus the unmarked head has the largest
ED compared to other unmarked packets in the queue. When
the scheduler tries to send a marked packet, it only needs to
make sure that theHeadEDwill not exceedα. There is no
need to check all theEDs in the queue.

If HeadEDwill exceedα upon transmitting a marked packet,
the scheduler should drop that marked packet and find an un-
marked packet to transmit. Searching the queue for the next
unmarked packet is obviously not a scalable option, and will
not preserve the O(1) complexity of this algorithm. Therefore,
the CL scheduler keeps a pointer associated with each element
of EDDQueuecorresponding to the owner of thisEDD value.
From EDDQueue, we can find the corresponding unmarked
packets. At the time when the scheduler finds out that the
marked packet at the head of the queue cannot be transmitted, it
will simply look up the pointer associated with theEDDHead
and send the unmarked packet corresponding to it.

IV. A NALYSIS

In this paper, for reasons of brevity, we omit proofs of the
following lemmas and theorems on the performance and effi-
ciency of the CL(α) scheduler. These theorems prove that the
CL(α) scheduler satisfies the requirements laid down in Sec-
tion II.

Theorem 1. The CL(α) scheduler has a per-packet work
complexity of O(1).

Lemma 1. During the execution of the CL(α) scheduling
discipline, at time instantt when a new unmarked packet is
added into the queue, its extra delay (ED(t)) is no more than
that of its predecessor, if that predecessor is either waiting in
the queue or being transmitted by the scheduler at that time.

Lemma 2. During an execution of the CL(α) scheduler, let
t be the instant of time when an unmarked packet is transmit-
ted. This unmarked packet suffers a delay less than or equal to
(ED(t)+Dref), whereDref is the delay of the same packet in
a reference scheduler which drops all marked packets.

Theorem 2. During any execution of the CL(α) scheduling
discipline, the additional delay of an unmarked packet caused
by the transmission of marked packets is never greater thanα.

138

V. CONCLUDING REMARKS

In this paper, we have defined the requirements of a sched-
uler serving packets belonging to the controlled load service
defined within IETF’s Integrated Services architecture. The
controlled load service requires source points to regulate the
traffic and mark packets that are sent in violation of the traffic
contract. One of the requirements we define is that the addi-
tional delay of unmarked packets caused due to the transmis-
sion of marked packets should be bounded. A O(1) scheduler
to achieve this bound is non-trivial. In this paper, we have pro-
posed the CL(α) scheduler, which bounds this extra delay toα
or less. The principle used in this algorithm can also be used to
schedule flows with multilevel priorities, such as in some real-
time video streams as well as in other emerging service models
of the Internet that mark packets to identify drop precedences
[1,4,5].

REFERENCES

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and
W. Weiss, “An Architecture for Differentiated Services”,
IETF Request for Comments 2475, December 1998.

[2] J. Wroclawski, “The Use of RSVP with IETF Integrated
Services”,IETF Request for Comments 2210, September
1997.

[3] J. Wroclawski, “Specification of the Controlled-Load Net-
work Element Service”,IETF Request for Comments
2211, September 1997.

[4] D. Clark, “Explicit Allocation of Best-Effort Packet Deliv-
ery Service”,IEEE/ACM Transactions of Networking, vol.
6, no. 4, August 1998.

[5] W.-C. Cheng, D. D. Kandlur, D. Saha and K. G.
Shin, “Adaptive Packet Marking for Maintaining End-to-
End Throughput in a Differentiated Services Internet”,
IEEE/ACM Transactions on Networking, Vol. 7, No. 5, Oc-
tober 1999.

139

Proceedings of the IEEE Workshop on Statistical Signal and Array Processing
Pocono Manor, Pennsylvania, USA, August 14–16, 2000

A SIMULATION STUDY OF THE IMPACT OF SWITCHING SYSTEMS
ON SELF-SIMILAR PROPERTIES OF TRAFFIC

Yunkai Zhou and Harish Sethu

Department of ECE, Drexel University
3141 Chestnut Street

Philadelphia, PA 19104-2875.
{kenty, sethu}@ece.drexel.edu

ABSTRACT

Recent research has shown that traffic in Ethernet and other
networks tends to exhibit properties of self-similarity such
as long-range dependence and a high degree of correlation
between arrivals. This paper investigates the impact of the
switching network on the self-similar properties of the traf-
fic. This simulation study reveals that switching networks
tend to reduce the self-similarity of highly self-similar traf-
fic. This is because of the truncation of long bursts due to
packet discards, and also because of aggregation of flows
through concatenated rather than superposed bursts. On the
other hand, switching systems have the opposite effect of
increasing the self-similarity of input traffic that has no self-
similar properties such as traffic with Poisson or uniformly
random distributions. This paper also presents simulation-
based evidence of the causes behind these phenomena.

1. INTRODUCTION

Recent work by many researchers has shown that traffic in
Ethernet and other networks tends to be bursty at many or
all time-scales [2,6], and that this phenomenon can be math-
ematically described using the notion of self-similarity. Ex-
tensive research has been done on the impact of the self-
similar properties of traffic on network design issues, such
as queueing performance [10], switch performance [3], con-
gestion control [5] and scheduling algorithms [4]. While it
is clear that traffic characteristics have an impact on net-
work design issues, it is also true that the properties of a
network have an impact on the characteristics of the traffic
as it progresses through the network. Very few studies, how-
ever, have addressed this issue of changes in traffic charac-
teristics caused by the network [1, 8, 12, 14]. These stud-
ies have focused on only the impact of individual compo-
nents of a network such as the traffic shaper [12], the packet
scheduler [1, 14] or a single-server queue [8], as opposed

This work was supported in part by U.S. Air Force Contract F30602-
00-2-0501

to the impact of the entire network as a whole. In addition,
studies such as [8] have obtained insightful theoretical re-
sults which, however, cannot be readily applied to realistic
network environments to solve problems in network engi-
neering. Further, studies such as in [12, 14] only consider
short-range burstiness, which does not capture all of the fea-
tures of self-similar traffic, especially long-range burstiness
as observed in [2,6].

This paper presents a simulation study of the impact of a
switching network on the self-similar properties of the traf-
fic, and investigates the causes underlying the observed phe-
nomena. We use self-similar traffic generated using the frac-
tional ARIMA model [7], and a baseline Banyan topology
for the switching network. Section 2 discusses the network
and the traffic model in greater detail.

Our simulation study reveals that switching networks
tend to reduce the self-similarity of highly self-similar traf-
fic. This is because of the truncation of long bursts due
to packet discards, and also because of the aggregation of
flows through concatenated rather than superposed bursts.
On the other hand, switching systems also increase the self-
similarity of input traffic that has no self-similar properties
such as traffic with Poisson or uniformly random distribu-
tions. Section 3 presents these simulation results and the re-
lated analysis with simulation-based evidence of the causes
behind the phenomena that yield these results. This section
also explains our results in relation to those obtained in [8]
and [11]. Section 4 concludes the paper.

2. NETWORK AND TRAFFIC MODEL

2.1. Network Model

This study uses anN×N baseline Banyan multistage net-
work, with N source nodes andN destination nodes. The
switching network consists oflogm N stages ofm×m
switching elements. In Banyan topologies, the path between
a source end-point and a destination end-point is unique.
This property of Banyan networks helps our study of the

140

¡
¡

¡

¡
¡

¡

¡
¡

¡@
@

@

@
@

@

@
@

@¢
¢
¢
¢
¢
¢

¢
¢
¢
¢
¢
¢A

A
A
A
A
A

A
A
A
A
A
A£

£
£
£
£
£
£
££B

B
B
B
B
B
B
BB

Inlet 0

Inlet 15

Outlet 0

Outlet 15

p
p
p
p
p
p

p
p
p
p
p
p

Figure 1: Banyan network withN = 16 andm = 4.

impact of switching systems, since it eliminates other sec-
ondary effects such as due to the choice of a routing algo-
rithm. The popularity of Banyan topologies in real imple-
mentations is an additional motivation behind our use of this
network model. Figure 1 shows a baseline Banyan network
topology withN = 16 andm = 4.

Each source node consists ofN traffic generators, each
of which generates traffic intended for a distinct destina-
tion node. Thus, the system consists of a total ofN2 traffic
generators. In our simulations, traffic generators are all in-
dependent, and generate no more than one packet per cycle.
We assume that packet lengths are constant, and that exactly
one packet can be transmitted during each cycle across any
port. If more than one packet are created in a source node
during the same cycle, only one of these is allowed to be
transmitted while all the others are buffered in a queue. We
assume that the queue sizes at the source nodes are large
enough that no packet is ever dropped before it enters the
network. Destination nodes drain packets from the output
ports of the last stage of switching elements, at the maxi-
mum rate of one packet per cycle.

In the switching elements, each input port is associated
with an input buffer of a fixed small capacity of 4 packet
lengths. Each output port contains a dedicated output buffer.
In addition, our simulations also use a shared output buffer
of capacity equivalent to 4 packets per output port for addi-
tional space for the output queues. Under most traffic condi-
tions, the shared buffer improves performance through bet-
ter buffer utilization. During each cycle in our simulations,
switching elements can accept no more than one packet at
each input port into the input queue. Each non-empty out-
put queue transmits exactly one packet to the output port in
each cycle. We use the round-robin scheduling algorithm to
transfer packets to and from the shared queue. A packet ar-
riving at an input port first enters the associated input buffer,
then the shared output buffer, and finally the output buffer
corresponding to the destination port. Our model ensures
that the maximum bandwidth with which the shared buffer

can be written into or read from, is equal to the maximum
aggregate input or output bandwidth of the switch. Pack-
ets arriving at a full input buffer are dropped. No packets,
however, are dropped at any other point within the switch-
ing element, i.e., packets are forwarded to the shared buffer,
or to an output buffer only if there is room available.

2.2. Traffic Model

We use the fractional autoregressive integrated moving av-
erage (FARIMA) model [7] to synthesize self-similar traffic.
FARIMA(p, d, q) is defined as

Φ(B)Xn = Θ(B)∆−dεn,

whereB is the backward operator, i.e.,Bxn = xn−1. The
definition above can be also expressed as

Xi = ∆−dεi − θ1∆−dεi−1 − · · · − θq∆−dεi−q

+φ1Xi−1 + · · ·+ φpXi−p.
(1)

In equation (1),∆−d is defined as∆−d =
∑∞

i=0 bi(−d)Bi,
whereb0(−d) = 1 and

bi(−d) =
Γ(i + d)

Γ(d)Γ(i + 1)
, i = 1, 2, . . .

When the innovationεi is a stable process with indexα,
i.e., εi ∼ Sα(σ, β, µ), the Hurst parameter,H, and the
quantitiesα andd are related byd = H − 1/α. In this
paper, we use the Hurst parameter as the measure of the de-
gree of self-similarity. The Hurst parameter has a range of
0.5 ≤ H ≤ 1, and a larger value ofH implies a higher
degree of self-similarity. Throughout our work, we use
α = 1.2, σ = 1, β = 0, µ = 0, p = 50, andq = 400. Θ(B)
is generated by selectingθi in [0, 0.05] randomly and in-
dependently. UnlikeΘ(B), Φ(B) is generated by selecting
p/2 complex roots and their conjugates, sinceXi converges
only if all roots ofΦ(B) are in the unit circle. The real and
imaginary components of each root are uniform in [0, 0.05].
Finally, we normalizeXi to a series of 1’s or 0’s indicating
whether or not a packet is generated during a given cycle.

The variance-time plot [9] is used to estimate the Hurst
parameter of observed network traffic. For a self-similar
time seriesX(k), Xm(k) is defined as

Xm(k) =
1
m

(m+1)k−1∑

i=mk

X(i),

and
varXm = varX/mβ ,

whereH = 1 − β/2. Taking the logarithm of the equation
above, we get,

log varXm = −β log m + log varX,

From the above equation, the Hurst parameter is determined
by the slope of the plot oflog varXm vs. log m.

141

0 1 2 3 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Hops Traversed

H
u

rs
t
P

a
ra

m
e

te
r

self−similar traffic
random traffic

Figure 2: Per-hop changes in self-similarity.

3. SIMULATION RESULTS AND ANALYSIS

In a switching element with buffers, a flow typically con-
sumes more space during a bursty period. Under such
conditions, depending on the buffer sharing policy and the
buffer sizes, either other flows suffer from less empty space,
or the bursty flow suffers a higher packet loss rate. In either
of these cases, the traffic characteristics change due to de-
lays or losses or both. If two or more flows are bursty at
the same time, these effects are further magnified. This sec-
tion presents our study of these effects on the self-similar
properties of traffic.

Our study includes two kinds of traffic sources, self-
similar and uniform random traffic. A uniform random traf-
fic source generates a packet during each cycle with a cer-
tain probabilityp, with uniformly distributed packet desti-
nations. Like Poisson traffic, uniform random traffic has a
Hurst parameter of 0.5, indicating that it has no self-similar
properties.

Our simulation study shows that the impact of a switch-
ing system on the self-similarity of the traffic depends on
the self-similarity of the input traffic itself. A switching sys-
tem reduces the self-similarity of highly self-similar traffic,
while it increases that of non-self-similar traffic such as uni-
form random traffic. Figure 2 illustrates this phenomenon of
the opposite nature of the effects observed depending on the
self-similarity of the input traffic itself. When the traffic is
uniformly random, the Hurst parameter increases from 0.5
to 0.64 after the first stage and stays around 0.65 thereafter.
When the input traffic has a high level of self-similarity,
the Hurst parameter drops from 0.86 to 0.78 after the first
stage, and further to 0.76 after the second stage. This inter-
esting phenomenon shows us that, switching networks have
the effect of shaping the traffic characteristics to a moder-
ate level of self-similarity. In the following, we investigate

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500
(a) Input Traffic

Burst Length

N
u

m
b

e
r

o
f

B
u

rs
ts

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500
(b) Output Traffic

Burst Length

N
u

m
b

e
r

o
f

B
u

rs
ts

Figure 3: Distribution of short burst length, (a) input traffic
and (b) output traffic.

and present simulation-based evidence of the causes of this
phenomenon.

In the case of uniform random traffic, the probability
of packet arrivals during each cycle is independent of the
packet arrival pattern during the previous cycles. As the
traffic progresses through a switching network with buffers
in the switching elements, this independence assumption
progressively becomes less valid. Packets for the same out-
put port that independently arrive at different times, due to
congestion, end up waiting in the buffers for transmission,
and get transmitted in a burst at the output port. This phe-
nomenon adds burstiness to the traffic at each new hop in the
path of the traffic, changing the output traffic characteristics
to something other than random uniform traffic. Packet ar-
rivals at subsequent hops of the network are now correlated,
as reflected in the increased Hurst parameter of the traffic.

The distribution of burst lengths in highly self-similar
traffic is heavy-tailed, i.e., the probability distribution is
given byP [X > x] ∼ x−α. Such a distribution decays

142

Number H (Input H (Output Percentage
of Nodes Traffic) Traffic) Decrease

2× 2 0.860 0.864 ∼ 0
4× 4 0.859 0.843 2%
8× 8 0.863 0.812 6%

16× 16 0.861 0.763 11%

Table 1: Self-similarity of traffic vs. number of nodes.

more slowly than exponentially, causing a high likelihood
of long bursts in self-similar traffic. However, because of
congestion and limited buffering capacities in the switch-
ing elements, long bursts do not easily survive in switching
networks. In fact, long bursts self-destruct through causing
congestion, triggering discarding of packets and thus break-
ing the long burst into smaller ones. For example, in our
simulations, the longest burst observed at the traffic source
had more than 6,000 consecutive packets, while the out-
put traffic had no bursts longer than 900 packets. This is
also illustrated in Figure 3, which shows that the distribu-
tion of short burst lengths of the input and the output traffic
of the network. The output traffic has a larger percentage
of shorter bursts, and with a significantly smaller average
burst length. Note that the relative increase in shorter bursts
increases the value of the indexα in a heavy-tailed distribu-
tion given byP [X > x] ∼ x−α. This, in turn, has the ef-
fect of reducing the Hurst parameter since, as shown in [13],
H = (3− α)/2.

In addition to the reduction in burst lengths, the other
reason for this phenomenon is that aggregation of flows in
networks typically has the effect of reducing variation over
larger scales. It should be understood that this phenomenon
is quite different from that shown in [11]. Willingeret al.
show that a superposition of manyON/OFF traffic sources
exhibits properties of self-similarity when the lengths of the
ON andOFF periods are independent and follow a heavy-
tailed distribution. Because of the limited bandwidth of out-
put links, a true superposition is never possible in switching
networks. Bursts are actually concatenated rather than su-
perposed on top of each other on the output links. A super-
position increases variation across scales, but a concatena-
tion actually has the effect of spreading out the peaks and
thus smoothening out the variations.

The phenomenon discussed above can be verified through
simulation using a singlem×m switching element and
varyingm. In this model, each output link is fed bym self-
similar traffic sources at the inputs. Table 1 shows the im-
pact on the self-similarity of the output traffic for different
values ofm. As can be observed from Table 1, the self-
similarity of traffic decreases as the level of aggregation in-
creases. This reduction in the self-similarity of traffic with
aggregation, is also the reason that highly self-similar traffic

0 1 2 3 4
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Stage Number

H
u

rs
t

P
a

ra
m

e
te

r

m=16
m=4
m=2

Figure 4: Per-hop changes for different switch sizes.

reduces in self-similarity as it progresses through each hop
in the switching network. This is easily understood from
noting that the output links further hops away from the traf-
fic sources carry more of an aggregated traffic than the ones
closer to the sources.

The same phenomenon is apparent in the impact of the
size of switching elements used in the topology of a switch-
ing network. A network designed using 2×2 switching el-
ements, as compared to 4×4 switching elements, will con-
tribute to a smaller decrease in the observed Hurst parameter
after the first hop. A network with 4×4 switching elements
achieves the same level of aggregation in fewer hops than
one using 2×2 switching elements. Figure 4 shows the per-
hop changes in the self-similarity of traffic for switching
networks with different sizes of switching elements.

It is worthwhile to discuss our results in relation to those
obtained by Songet al. [8] in their study of self-similarity
of output traffic at a single server with an infinite buffer. It
is proved in [8] that if the queue length has finite variance,
the self-similar properties of input and output traffic remain
the same. In fact, it is shown that both the input and out-
put traffic have the same Hurst parameter. Noting that it is
unrealistic to assume an infinite buffer, the authors in [8] ar-
gue that in real switches, the condition that queue length has
finite variance is always satisfied. However, another impor-
tant impact of finite buffers should be considered—traffic
can be accepted into the buffer only if there is available
space. In the absence of a feedback mechanism, packet dis-
carding becomes inevitable which changes the traffic char-
acteristics; in the presence of a feedback mechanism such
as credit-based flow control, the characteristics of arriving
traffic itself changes. A second important reason for the
apparent discrepancy between our results and that in [8] is
that our results use the self-similar properties ofaggregate
traffic at each output link, while the results in [8] compare

143

the properties ofindividual flows before and after service
by the server. Our approach to only analyze aggregate traf-
fic is motivated by the fact that most switches and routers
do not maintain per-flow queueing, and therefore, only the
characteristics of the aggregate traffic at each input or out-
put link is important to the performance and related issues
in the design of switches and routers.

All of the results presented in this paper were obtained at
moderate or heavy traffic loads. As one might expect, the
impact of the switching network on the traffic characteristics
is minimal when the traffic load is small.

4. CONCLUSION

In this paper, we have presented simulation studies that
show that highly self-similar input traffic reduces in its self-
similarity as it progresses through a switching network. Our
analysis indicates that this phenomenon is caused by the
truncation of long bursts due to packet discarding, and by
the aggregation of flows through concatenation of bursts.
On the other hand, during periods of congestion in networks
with buffers, input traffic with no self-similar properties in-
creases in self-similarity as it progresses through the net-
work.

These results have important implications relevant to the
design of routers and switches. For example, our results
suggest that core Internet routers receive traffic that is much
less self-similar than traffic that emerges out of border
routers directly connected to Ethernet LANs.

Acknowledgments

The simulation code to generate the self-similar traffic
was partly written by Haiguang Cheng. The authors would
also like to gratefully acknowledge his contribution through
discussions that further improved the traffic model.

REFERENCES

[1] S. Borst, O. Boxma and P. Jelenković. “Asymp-
totic Behavior of Generalized Processor Sharing with
Long-Tailed Traffic Sources”.Proceedings of IEEE
INFOCOMM, Tel Aviv, Israel, Mar. 2000.

[2] M. E. Crovella and A. Bestavros. “Self-Similarity
in World Wide Web Traffic: Evidence and Possible
Causes”.IEEE/ACM Transactions on Networking, vol
5, no. 6, Dec. 1997.

[3] S. Fong and S. Singh. “Performance Evaluation
of Shared-Buffer ATM Switches Under Self-Similar
Traffic”. Proceedings of IEEE International Perfor-
mance, Computing, and Communications Conference,
Arizona, 1997.

[4] R. G. Garroppo, S. Giordano, S. Miduri, M. Pagano
and F. Russo. “Statistical Multiplexing of Self-Similar
VBR Video-conferencing Traffic”.Proceedings of
GLOBECOM, 1997.

[5] A. Gersht, G. Pathak and A. Shulman. “Burst Level
Congestion Control in ATM Networks”.Proceedings
of IEEE Symposium on Computer and Communica-
tions, Athens, Greece, July 1998.

[6] W. E. Leland, M. S. Taqqu, W. Willinger and D. V.
Wilson. “On the Self-Similar Nature of Ethernet Traf-
fic (Extended Version)”.IEEE/ACM Transactions on
Networking, vol. 2, no. 1, Feb. 1994.

[7] G. Samorodnitsky and M. S. Taqqu.Stable Non-
Gaussian Random Processes: Stochastic Models with
Infinite Variance.Chapman & Hall, NY, 1994.

[8] S. Song, J. K.-Y. Ng and B. Tang. “On the Self-
Similarity Property of the Output Process from a Net-
work Server with Self-Similar Input Traffic”.Proceed-
ings of Sixth International Conference on Real-Time
Computing Systems and Applications, pp. 128–132,
Dec. 1999.

[9] W. Stallings.High-Speed Networks: TCP/IP and ATM
Design Principles.Prentice Hall, Upper Saddle River,
NJ. 1998.

[10] B. Tsybakov and N. D. Georganas. “Overflow Proba-
bility in an ATM Queue with Self-Similar Input Traf-
fic”. Proceedings of IEEE International Conference on
Communications, Montreal, Canada, June 1997.

[11] W. Willinger, M. S. Taqqu, R. Sherman and D.
V. Wilson. “Self-Similarity Through High-Variability:
Statistical Analysis of Ethernet LAN Traffic at the
Source Level”.IEEE/ACM Transactions on Network-
ing, vol.5, no.1, Feb. 1997.

[12] S. Wittevrongel and H. Bruneel. “Output Traffic Anal-
ysis of a Leaky Bucket Traffic Shaper Fed by a Bursty
Source”.Proceedings of IEEE International Confer-
ence on Communications, pp. 1581–1585, 1994.

[13] X. Yang, A. P. Petropulu and V. Adams. “The Ex-
tended ON/OFF Model for High-Speed Data Net-
work”. Workshop on Applications of Heavy Tailed
Distributions in Economics, Engineering and Statis-
tics, Washington, D.C., Jun. 1999.

[14] H. Zhang. “Service Disciplines for Guaranteed Perfor-
mance Service in Packet-Switching Networks.”Pro-
ceedings of the IEEE, vol. 83, no. 10, Oct. 1995.

144

PIGLET: AN OPERATING SYSTEM FOR NETWORK

APPLIANCES

STEVE J. MUIR

A DISSERTATION

in

COMPUTER AND INFORMATION SCIENCE

Presented to the Faculties of the University of Pennsylvania in Partial Ful�llment of the

Requirements for the Degree of Doctor of Philosophy

2001

Jonathan M. Smith
Supervisor of Dissertation

Val Tannen
Graduate Group Chair

145

c Copyright 2001

by

Steve J. Muir

146

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Jonathan Smith for his guidance and advice

over the past four and a half years. His knowledge, experience and unfailing enthusiasm

for this project inspired me to persevere.

My thesis committee|Michael Greenwald, Dave Farber, Roch Guerin, Derek Mcauley

and Larry Peterson|humoured my initial optimistic estimates of how much work was to

be done but their patience was greatly appreciated. Their combined wisdom and insightful

comments improved this thesis no end and provided ample food for future thought.

Luke Hornof kept me sane, enlightened and amused, Sanjay Udani proved to be a

worthy Scrabble adversary, and Dave Azari taught me to shoot hoops. Geo� Milord did

an excellent job of implementing various Piglet hacks and making me look organised.

Paul Beavan at IBM Hursley gave me the opportunity to work on a substantial project

before I knew the �rst thing about Computer Science: from that small seed everything

else has grown.

Aled Edwards and everyone else I worked with at HP Labs Bristol introduced me to

the research environment, got me hooked and put the beginnings of this thesis into my

head. Aled deserves special mention for teaching so much by his example.

My internships at DEC/Compaq's Systems Research Center and NEC USA's Advanced

Development Center helped broaden my horizons. Thanks to Sanjay Ghemawat and Zoran

Miljanic for giving me those opportunities.

My time at Penn was made enjoyable and educational by all my fellow students in the

Distributed Systems Lab. Particular thanks go out to everybody who shared an oÆce with

me and had to put up with the noise and clutter.

Vanu Bose and my colleagues at Vanu, Inc. have inherited the noise but given me the

chance to work in an exciting new venture.

iii

147

Katherine Becker coaxed me along when I was least motivated to sit down and write.

To all my friends, wherever you are: I couldn't ask for better ones.

Last, but certainly not least, thanks go to my family for always encouraging me to

pursue whatever goals I set my sights on.

This work was supported by DARPA under Contract #N66001-96-C-852 and Cooper-

ative Agreement# F30602-00-2-0501, and by the US National Science Foundation under

Grants #ANI98-13875 and ANI 99-06855.

iv

148

ABSTRACT

PIGLET: AN OPERATING SYSTEM FOR NETWORK APPLIANCES

Steve J. Muir

Jonathan M. Smith

Advances in the performance of commodity hardware and acceptance of open-source soft-

ware have recently led to the increased use of systems based upon a combination thereof

as network appliances. The principal thesis of this dissertation is that such appliances can

operate more eÆciently if their operating system is designed speci�cally for that task. I

present Piglet as a novel design for such an operating system, and describe its implemen-

tation and evaluation in such a context.

The core of the Piglet architecture is the Active Kernel. A dedicated kernel pro-

cessor provides concurrency between kernel and applications and enables asynchronous

shared-memory communication. The use of shared objects for all communication between

applications and the kernel permits Piglet to o�er much more eÆcient mechanisms for the

invocation of system services than a conventional kernel.

The experimental results presented herein demonstrate how these fundamental kernel

features make Piglet a more eÆcient operating system for network appliances: reduced

latency for individual operations and increased aggregate data throughput. In addition

to detailing microbenchmark results to support those claims, I show how an existing web

server application can readily make use of those enhancements to achieve a performance

boost over standard operating systems.

Finally, this dissertation examines, both quantitatively and qualitatively, some of the

challenges and problems presented by the implementation of the Piglet architecture, and

proposes solutions and/or architectural changes to address those concerns.

v

149

Contents

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 What is a Network Appliance? . 3

1.2 Why a New Operating System Architecture? 3

1.3 Contributions of this Dissertation . 4

1.4 Outline of the Dissertation . 5

2 Intrusion|When Operating Systems Go Bad 6

2.1 Resource Intrusion . 7

2.2 Policy Intrusion|Common-Case Optimisation Considered Harmful 8

2.3 Mechanism Intrusion|the Price of Safety 9

2.3.1 Synchronous Intrusion|Traps . 11

2.3.2 Asynchronous Intrusion|Interrupts 11

2.4 Correlated vs. Uncorrelated Intrusion . 12

2.5 Intrusion in Multiprocessor Systems . 12

2.6 Intrusion Factor|an Intrusion Metric . 13

2.6.1 Livelock|the Curse of In�nite Intrusion Factor 14

2.7 Evaluating the Cost of Intrusion . 14

3 The Piglet Architecture 17

3.1 The Evolution of Operating Systems . 17

vi

150

3.1.1 The Microkernel . 19

3.1.2 Vertically-Structured Systems . 21

3.1.3 The Next Step|an Active Kernel 22

3.2 Anatomy of Piglet . 24

3.2.1 Primary Features of Piglet . 24

3.2.2 Secondary Architectural Features . 25

3.3 A Dedicated Kernel Processor . 26

3.3.1 Client Page Monitor . 27

3.3.2 Integrated Service Scheduler . 27

3.3.3 Host Communication Module . 29

3.3.4 Scheduling in the Polling Function 29

3.4 No Asynchronous Interrupts . 30

3.5 Shared-Memory Communication . 32

3.6 The Piglet-Application Interface . 36

3.6.1 API Basics . 37

3.6.2 Asynchronicity Creates Concurrency 38

3.6.3 References Arguments and Speculation 39

3.6.4 Optimistic Service Invocation . 39

4 Implementing Piglet 41

4.1 Building the Linux/Piglet Hybrid . 41

4.1.1 Linux Kernel Hooks . 43

4.1.2 Using Host Services Within Piglet 44

4.1.3 The Host Communications Module 45

4.2 The Piglet Network Subsystem . 46

4.2.1 Frame Transmission . 51

4.2.2 Frame Reception . 52

4.2.3 Frameset Creation . 54

5 Evaluating Piglet 56

5.1 The Overhead of Service Invocation . 57

vii

151

5.1.1 Measurement of Round-Trip Latency 57

5.1.2 Analysis of System-Call Overheads 60

5.2 Concurrent Data Throughput . 63

5.2.1 Application Throughput Analysis . 65

5.3 Pro�ling the Polling Function . 67

5.3.1 PSR Processing Time . 67

5.3.2 Frameset Polling Overhead . 68

5.3.3 Frame Transmission Cost . 69

5.3.4 Device Polling Overhead . 70

5.3.5 CPU Utilisation . 71

5.3.6 Analysis of Polling Function . 72

6 Application-Level Performance: The Flash Web Server 74

6.1 Porting Flash to Piglet . 74

6.2 Evaluating Flash's Performance . 77

7 Related Work 80

7.1 Intrusion . 80

7.1.1 Policy Intrusion . 81

7.1.2 Mechanism Intrusion . 82

7.1.3 Multiprocessor Intrusion . 83

7.2 Alternative Operating System Architectures 84

7.2.1 Microkernels . 85

7.2.2 Vertically-Structured Operating Systems 87

7.2.3 Extensible Operating Systems . 88

7.3 Operating Systems for Network Appliances 89

7.4 Message-based Systems . 90

8 Conclusions and Future Research 92

8.1 Analysing Operating System Intrusion . 93

8.2 Piglet|Reducing Intrusion by Activating the Kernel 93

viii

152

8.3 Performance of the Active Kernel . 94

8.4 Future Work . 94

8.4.1 Optimising the Active Kernel . 94

8.4.2 Evaluation of Alternative Applications 95

A Linux ping Execution Trace 96

ix

153

List of Tables

2.1 Measured time costs of OS intrusion . 15

2.2 Comparative costs of system calls . 15

3.1 Network-related services in the Piglet kernel 28

5.1 Mean round-trip times . 59

5.2 Mean processing time for various PSRs . 67

5.3 Total frameset processing time for n pending frames 69

5.4 Device event handling time in di�erent states 70

5.5 CPU utilisation and polling period . 71

6.1 Distribution of �le sizes for Webstone benchmark 77

6.2 Flash performance for the Webstone benchmark 77

6.3 Flash performance for the curl test . 78

x

154

List of Figures

3.1 Monolithic operating system structure . 18

3.2 Microkernel-based operating system structure 20

3.3 Vertically-structured operating system . 21

3.4 Active kernel-based operating system . 22

3.5 Structure of the main function . 27

3.6 Basic structure of the Piglet shared queue object 34

3.7 Structure of the Piglet Posted Service Request 36

4.1 Hybrid Linux/Piglet kernel structure . 42

4.2 Network module structure . 47

4.3 Frameset and user-level frame header structure 48

4.4 Frame header state transitions . 50

4.5 Frameset creation: an example of chained posted service requests 54

5.1 Command used to measure round-trip latencies. 58

5.2 Distribution of round-trip times as a function of payload size 58

5.3 Linux ping trace . 61

5.4 Piglet ping trace . 61

5.5 Testbed con�guration used for bandwidth measurement 63

5.6 Mean aggregate throughput for n concurrent TCP connections 64

5.7 Frameset polling time as a function of number of clients 68

6.1 Flash performance for n server processes . 79

xi

155

Chapter 1

Introduction

The Internet is here|it is ubiquitous, it is diverse, and it is growing. Ubiquitous: any

two computing devices anywhere in the world can communicate with each other across

it. Diverse: the number and variety of connected devices ranges from the tiniest cellular

phones up to the largest supercomputers, sending many di�erent types of data across a

single physical network. It's growing: Kahn and Cerf [40] estimated in December 1999

that the Internet would connect 300 million computers by the end of 2000, and continue

growing at 80% per year.

Compare the success of the Internet with other major communications networks, even

just in the United States. The plain old telephone system (POTS) is certainly ubiquitous

and works extremely well, but one can hardly claim diversity of end systems or traÆc types

as one of its successes. The same report by Kahn and Cerf has the telephone network

growing at 5{10%, at which rate it will be surpassed in size by the Internet around the end

of 2006. Wireless communications networks are growing, but competing standards have

thus far prevented ubiquity and only recently have networks diversi�ed beyond voice calls

between mobile phones.

A large part of the success of the Internet stems from the use of the same computer

systems within the network as are connected to the network. Familiarity with these systems

by network users enabled the easy and rapid deployment of services within the network.

Even as far back as the ARPANET, data networks have used the same type of systems as

the network nodes as also constituted the network leafs; many of the original IP gateways,

1

156

themselves various LSI-11 machines, primarily routed messages between similar systems

used by the connected research institutions. The widespread adoption of the Internet

Protocol (IP) [71] allowed many di�erent hardware systems to all connect to the same

network.

This homogeneity of computing platform, combined with the tremendous prevalence of

the UNIX operating system within computer science research institutions, meant that soon

UNIX not only ran on most computers connected to the network but also the majority

within it. When the need to deploy network services arose the choice of platform for those

services was obvious; hence the almost universal provision of network services by UNIX-

based systems e.g., the domain name service(DNS) [56, 57] and the simple mail transfer

protocol (SMTP) [72] being commonly implemented by the UNIX programs bind [37] and

sendmail [79] respectively.

With the advent of the World Wide Web in the early 1990s two new classes of network

service have become predominant|the Web server and Web cache. While these services

are also often provided by UNIX-based systems, albeit running less ubiquitous programs

(Apache [1] and Squid [3] respectively), there has recently been increased interest in having

them provided by systems designed exclusively for and dedicated to that task|server

appliances. Similarly, after years of moving toward dedicated hardware-based forwarding,

router vendors are starting to return to general-purpose platforms as the basis for their

systems: Microprocessor Report reports [25] that Cisco is using a network processor rather

than �xed-function ASIC because the latter lacks the exibility required to handle new

protocols.

While the predominance of a single, general-purpose operating system has led to much

of the success of the Internet, it is the claim of this thesis that new operating systems

designed speci�cally for network appliances are necessary to continue that success in the

21st century.

2

157

1.1 What is a Network Appliance?

De�nition: a network appliance is any system with the primary and sole task

of enabling the provision of network services to client systems.

The term `client system' is used in no stronger sense than to mean the recipient of

data from another computer system|in particular, it does not imply a particular com-

munication architecture. Appliances are considered to be systems which are specialised,

although not necessarily at the hardware level, for a speci�c task, thus systems which

enable provision of network services as one of their many roles are excluded from this

categorisation.

Network appliances can be further divided into two classes: those systems which pro-

vide network services, or equivalently, the data which constitutes those services; and those

systems which convey that data from the provider to the client. These two classes are

denoted server appliances and forwarding appliances respectively|the terms server and

router are roughly equivalent but are avoided here due to additional connotations associ-

ated with them.

Both server and forwarding appliances may be implemented using either special- or

general-purpose hardware platforms. However, increases in the last ten years in the com-

puting power of commodity computer systems, speci�cally Intel x86/IBM PC-compatible

machines, and a related but lesser increase in I/O throughput, have made such systems

the platform of choice for network appliances.

1.2 Why a New Operating System Architecture?

The motivation to design a new operating system arose from two independent factors: de-

�ciencies in the use of existing, general-purpose operating systems for network appliances,

and the increasing availability of multiprocessor variants of the commodity PC. This thesis

demonstrates how an appropriately designed operating system leverages the bene�ts of the

multiprocessor platform to address the problems of the appliance operating system.

The chief de�ciency arising from the use of general-purpose operating systems as the

3

158

basis for a network appliance is the failure to take advantage of favourable workload char-

acteristics. More speci�cally, network appliances primarily move data rather than create

it, either from storage to network|server appliances|or network to network|forwarding

appliances. While this characterisation is obviously true for the majority of network ap-

pliances e.g., web caches and proxies, email servers, �rewalls, routers, etc., there is one

important special case to consider in more detail: web servers providing dynamic web con-

tent. Dynamic web pages have undoubtedly become a signi�cant fraction of web traÆc,

but many of the most common dynamic page technologies, such as JavaScript and Java

applets, are implemented purely by the client (browser). In addition, at least one study of

server workloads [46] found that server-side dynamic content (CGI scripts in that study)

accounted for a small fraction, typically less than 10%, of total workload.

Thus one may indeed characterise the workload of network appliances as being pre-

dominantly data transfer rather than computation, and hence the operations performed

by software will obviously be di�erent than those of a system used for more general com-

putational tasks. It therefore appears reasonable to assume that an operating system

specialised to the task of data movement may make a more eÆcient basis for a network

appliance than a more general system.

Similarly, an operating system which is designed speci�cally to run on a multiprocessor

system may be able to better utilise multiple processors than a uniprocessor operating sys-

tem retro�tted with the requisite facilities e.g., concurrency control, scheduling. Combine

this with the bene�ts of optimisation for the network appliance workload and signi�cant

bene�ts may be expected.

1.3 Contributions of this Dissertation

The primary goal of this work was the design, implementation, testing and evaluation of an

operating system targeted speci�cally at the network appliance application domain and to

be deployed exclusively on commodity multiprocessor hardware. As steps toward this goal,

and as the ultimate product of this work, this dissertation makes several contributions to

the �elds of operating systems and network appliances:

4

159

� A characterisation of the overheads imposed by existing operating systems upon

application programs.

� An architectural design for a multiprocessor operating system specialised to the task

of hosting a network appliance system.

� An implementation of this architecture using commodity hardware and existing op-

erating systems to provide a convenient development and evaluation platform.

� Analysis of this prototype implementation, including both latency- and throughput-

based microbenchmark results.

� Porting of an existing server appliance application program|the Flash [69] web

server|to the prototype operating system.

� Measurement of the application-level performance bene�ts compared to a conven-

tional, general-purpose operating system.

1.4 Outline of the Dissertation

After this brief introduction to the goals of this dissertation I begin with a qualitative

analysis of the costs incurred by application programs due to the structure of existing

operating systems. In Chapters 3 and 4 a design for an architecture which reduces these

costs is introduced, and a prototype implementation described.

This implementation is then evaluated at the microbenchmark level using a number

of experiments, described in Chapter 5. The following chapter describes the porting of

a particular application, the Flash web server, to the Piglet prototype and provides a

comparison of application performance on Piglet and Linux platforms.

The dissertation concludes by comparing the operating system proposed here with

other work which addresses the same concerns. The contributions of this thesis and topics

of future work are investigated in Chapter 8.

5

160

Chapter 2

Intrusion|When Operating

Systems Go Bad

The primary role of a modern operating system is enabling the concurrent execution of

multiple independent programs. This is equivalent to the multiplexing of shared resources

among those programs|a task usually accomplished by the virtualisation of those re-

sources, consisting of the following interrelated functions:

1. Protection|preventing applications from accessing resources in modes other than

which they have been speci�cally authorised to do so.

2. Multiplexing|providing multiple applications with independent virtualisations of a

single physical resource.

3. Translation|mapping each application's virtualisation onto the underlying physical

resource(s).

The composition of these virtualisation primitives allows an operating system to share

physical resources among the independent programs executing at any given time. As an

example, consider virtual memory: page tables provide translations from virtual address

spaces onto the multiplexed physical memory and are protected from unauthorised access

by application programs.

6

161

Unfortunately these virtualisation primitives have often been needlessly conated with

the higher-level functions provided by operating systems, such as �lesystems, network

protocol stacks, and execution of binary programs. This conation arises from what was

historically an important role of an operating system: to provide a library of common

functions which could be used by the single program executing at a given time on the host

computer system [50].

This intimate coupling between virtualisation and higher-level functionality unfortu-

nately leads to non-optimal application behaviour (see Section 7.1.1). Hence the recent

interest in operating systems which decouple virtualisation from higher-level functionality,

such as the University of Cambridge's Nemesis kernel, and MIT's Exokernel.

All forms of intrusion reduce the availability of physical resources to applications|I

have chosen, however, to separate them into two categories: resource intrusion and time

intrusion. The latter is further subdivided by the basis of the intrusion: either caused

by the policies implemented by the operating system|policy intrusion|or due to the

mechanisms employed by the operating system|mechanism intrusion.

A rule of thumb for determining whether resource usage by an operating system should

be considered intrusion is whether an application (or group of applications) running with

exclusive, direct access to all physical resources would exhibit the same usage.

2.1 Resource Intrusion

Resource intrusion denotes the use of physical resources e.g., memory, disk blocks, network

bandwidth, by an operating system for its own purposes, or equivalently for purposes

which do not further the progress of an application. As an example, memory used by the

operating system to store information about each running process, or about the use of

memory pages, is obviously not available for an application's own purposes. Similarly, disk

blocks used to store metadata e.g., inodes in a UNIX �lesystem, and network headers used

to multiplex multiple data streams onto a physical network also both constitute operating

system (at least for accounting purposes in the networking case) intrusion.

While resource intrusion is both important and fertile ground for research it is not

7

162

covered further in this thesis. This is primarily to limit the scope of the work, but it may

also be observed that in today's resource-rich computing environments the small overheads

incurred due to the operating system are not worth consideration. However, that is not to

say that such work is not relevant or has not been done e.g., Van Jacobson's TCP header

compression [38], the ReiserFS [78] tree-structured �le system.

2.2 Policy Intrusion|Common-Case Optimisation Consid-

ered Harmful

Policy Intrusion arises when the functions provided by an operating system embody poli-

cies which have detrimental e�ects upon application behaviour. A classic example of

this e�ect was observed in Stonebraker's seminal paper on \Operating System Support for

Database Management" [85], where the policies implemented by a general-purpose oper-

ating system were determined to be non-optimal for the speci�c application of database

management. Policy intrusion generally arises not from an operating system's resource

management policies being optimised for the most common (general) case, but from lack

of provisions for circumventing these policy decisions.

Examples of such policy decisions include �le prefetching and network bu�er overow.

File prefetching is performed by an operating system to increase the eÆciency of accesses

to storage devices|operating systems often requests multiple blocks at once to amortise

the overhead associated with requesting a block of data over multiple blocks. The �le

prefetching policy determines which additional blocks should be requested if less than

the multiple number are speci�ed by the application; the most common such policy is

sequential lookahead, where the operating system assumes that if block n is requested by

an application then blocks n+ 1; n+ 2; ::: will also be requested in the near future. While

this may be true for general-purpose applications which tend to read �les sequentially it

is unfortunately completely inappropriate for (say) database management systems which

access �les randomly. The operating system thus wastes bandwidth and time processing

blocks which will never be needed. Similar ineÆciency may also occur when a CPU fetches

a whole cache line from memory to satisfy an access to only a single word within that

8

163

line e.g., non-sequential access to large arrays; this is an example of CPU policy intrusion

rather than operating system intrusion however.

Network bu�er overow occurs when a network packet arrives destined for an applica-

tion which already has full bu�ers. Since there is no space for the new packet the operating

system must have a policy for what action to take in such circumstances. Although the

common policy of discarding the new packet is acceptable for most applications, for an

important class of program, namely those which handle time-dependent or idempotent

data, it would be preferable to discard the oldest data to create room for the new.

Thus di�erent projects to reduce policy intrusion have taken di�erent tacks toward the

same goal. One approach, exempli�ed by those systems known as vertical operating systems

or exokernels, removes as much policy as possible from the operating system kernel, instead

relying upon applications and libraries to implement all higher-level resource management

with the appropriate policies. An alternative approach, taken by projects such as Carnegie-

Mellon University's TIP system [10, 70] allows applications to specify hints to the operating

system about the preferred resource management strategy for that application. Similarly,

the vadvise system call is provided in some versions of BSD UNIX to allow applications

to `advise' the kernel of particular virtual memory behaviour patterns.

2.3 Mechanism Intrusion|the Price of Safety

In order to support the �rst primitive of resource virtualisation i.e., protection, an operating

system must isolate physical resources from the applications which use them. Otherwise a

malicious application with direct access to the resource, say through its I/O control ports,

can subvert whatever multiplexing the operating system performs, either to acquire more

resources for itself, or to interfere with the resources allotted to another application.

Protection is almost universally implemented by partitioning the program execution

domain into privileged and unprivileged regions, which are conventionally referred to as

supervisor and user levels. The operating system runs at the supervisor level, with full

access to all CPU instructions and capabilities, while applications run at user level, able

to access only a `safe' subset of the instruction set.

9

164

However, it is worth noting that privilege levels are not the only means of preventing

unauthorised access to a physical resource: language-based protection and naming have

also been used to do so. Examples of systems which derived protection from a high-level

language include the LISP machine [23], Swift [12], based upon the CLU language [44],

and the Java-based Ka�eOS [4]. The Anonymous RPC [91] system eschews privilege-

based protection in favour of a probabilistic approach: by randomly distributing virtual

pages within a large, sparse address space and making the penalty for an invalid access

suÆciently high it becomes infeasible for applications to scan the address space hoping

to stumble across other applications' memory pages. Amoeba [86] uses cryptographic

mechanisms to enforce protection of capabilities granted to applications|capabilities are

encoded in such a manner that applications cannot make modi�cations to them without

violating integrity checks included in the capability. Such schemes are not without cost of

their own though, nor can they be applied to all resources, so they should not be considered

a perfect solution.

Once the operating system kernel has erected privilege boundaries around itself to

provide resource protection it becomes necessary to cross those boundaries when kernel

services must be invoked. These privilege boundary crossings occur in two situations:

� When an application wishes to invoke an operating system service e.g., to write data

to a �le.

� When a hardware device raises an interrupt to request that a device driver be invoked

to handle some state change in the device e.g., the arrival of a network packet.

Both occurrences can be referred to as interrupts, and further classi�ed as either syn-

chronous or asynchronous respectively depending upon whether their incidence is synchro-

nised with the execution of the application program running when the interrupt occurs.

However, for the purposes of further discussion I shall use the term trap to denote a syn-

chronous interrupt, and limit the term interrupt to refer only to asynchronous instances.

While sharing some similarities there are also important di�erences between synchronous

and asynchronous intrusion.

10

165

2.3.1 Synchronous Intrusion|Traps

Synchronous intrusion occurs when an application executes a sequence of instructions,

culminating in the trap instruction itself, which cause the CPU to switch from the un-

privileged execution domain (user level) to the privileged kernel domain. Because the

application is in a known state before executing the trap, and is aware that such an event

is about to happen, the machine state which must be saved can be carefully controlled by

the operating system. This situation is analogous to the set of caller-saved registers in a

function calling convention: if the application needs to retain state across the invocation

it is responsible for saving it.

This caller-saved model of trap has only become the norm in modern i.e., RISC, CPU

architectures. Prior architectures, such as early versions of the Intel x86 CPU, provided

trap mechanisms which had exceedingly high overhead due to their complexity, often saving

the complete set of CPU registers and loading the saved registers for another task. Al-

though the provision of lower-overhead primitives is important it is certainly not the only

factor in determining the operating system-dependent trap overhead. Other tasks which

increase the intrusion cost include updating virtual memory control registers, switching to

a kernel stack frame, and preparing the environment for entry into the kernel proper.

2.3.2 Asynchronous Intrusion|Interrupts

The overhead of an interrupt is much greater than that of a trap for two reasons: �rst, the

asynchronous nature of the interrupt means that the application is in an unknown state

when it occurs, so the operating system must be conservative in preserving all state which

could be a�ected by its handling of the interrupt; and second, the signaling used to raise

an interrupt usually requires several bus transactions to occur when the interrupt is raised

and subsequently acknowledged. These additional penalties can signi�cantly increase the

overhead of interrupt handling over trap handling, as shown in Section 2.7 (below).

Both synchronous and asynchronous interrupts can also have an adverse e�ect upon

applications beyond the immediate time penalty. Mogul and Borg [58] showed that context

switches due to interrupts signi�cantly reduce the bene�ts of cache memory, since they

interfere with locality of reference.

11

166

2.4 Correlated vs. Uncorrelated Intrusion

An important consideration when evaluating intrusion is the degree to which it is correlated

with the application's behaviour. Correlated intrusion is directly related to the actions

performed by an application|synchronous intrusion, for example, is entirely correlated

with the application execution since each instance of intrusion occurs when the application

invokes an operating system service. Uncorrelated intrusion, on the other hand, occurs

regardless of the actions of the application program; timer interrupts are an example of

such.

Although there is a spectrum of correlation between application behaviour and aggre-

gate intrusion e�ects, individual instances of intrusion are usually either perfectly corre-

lated with the application behaviour i.e., intrusion occurs due to application actions, or

entirely correlated.As mentioned above, synchronous intrusion is perfectly correlated, while

asynchronous intrusion is either perfectly correlated (consider an interrupt due to a net-

work packet received in response to a query sent by the application) or entirely uncorrelated

e.g., timer interrupts.

Unbounded uncorrelated intrusion is particularly problematic for applications since it

can severely impact the amount of time the application receives for execution (see Sec-

tion 2.6.1).

2.5 Intrusion in Multiprocessor Systems

Multiprocessor systems are particularly prone to mechanism intrusion, since most general-

purpose operating systems which are used on such systems are adapted from a uniprocessor

base. Thus, in addition to having to coordinate access by multiple independent applications

to a single physical resource, the operating system on a multiprocessor system must also

enforce this protection across multiple CPUs. The concurrency control required to do so

introduces an extra layer of mechanism intrusion on top of that present in a uniprocessor

system.

This form of intrusion is particularly problematic if a uniprocessor operating system is

adapted naively to support multiple processors. Consider a system which serialises access

12

167

to kernel resources by simply enclosing the entire kernel within a single lock structure, as is

the case in the Linux 2.0 kernel. If multiple applications spend a signi�cant fraction of their

workload executing within the kernel, as might be expected if data transfer is their primary

task, then they e�ectively become serialised by this global lock, and the multiprocessor

system performs no better than a uniprocessor. In fact, the additional overhead of the

multiprocessor system's concurrency control may actually reduce the performance slightly.

This serialisation has been observed in experiments described in Section 5.2.

2.6 Intrusion Factor|an Intrusion Metric

As a metric of the degree of intrusion due to an operating system we de�ne the Intrusion

Factor as follows:

IF =
RealExecutionT ime

IdealExecutionT ime

where Real and Ideal Execution Time are, respectively, the execution time of a given

operation both with and (perhaps theoretically) without an operating system present.

For example, the UNIX getpid() function, to obtain the calling process's process ID,

is extremely simple, requiring only the reading of a �eld from a structure|perhaps a few

instructions which are, in practice, negligible compared to the overhead of the system call

invocation mechanism. Thus the intrusion factor (IF) for getpid() on UNIX is very large,

almost the worst-case value (the null system call being worse). For more common oper-

ations which perform more `work' within the operating system, rendering the invocation

overhead negligible, the IF is likely to be close to unity|obviously an ideal operating

system would have the minimal IF of one for all operations.

Thus the IF provides a measure of how much overhead is incurred on a given operation

due to the mechanisms of the operating system. One particularly interesting case arises

when the IF becomes in�nite|however much time is spent executing the operating system

no `work' is ever accomplished on behalf of applications.

13

168

2.6.1 Livelock|the Curse of In�nite Intrusion Factor

This case of in�nite intrusion factor is referred to in earlier work by other researchers as

livelock. The classic example is livelock due to network interrupt processing, as described

by Ramakrishnan [74]. There a UNIX kernel was observed to never make any progress

in executing application programs because 100% of CPU time was consumed by interrupt

handling.

Hence one of the motivations for the Piglet operating system was the elimination of

in�nite intrusion factor situations, since their presence is a suÆcient, albeit not necessary,

condition in rendering the host computer vulnerable to denial-of-service attacks. Since in�-

nite IF can only arise due to asynchronous mechanism intrusion i.e., interrupts, alternative

mechanisms must be used in the operating system to alleviate this problem.

2.7 Evaluating the Cost of Intrusion

In order to provide an indication of the order of magnitude of mechanism intrusion costs

simple experiments were performed using the Linux 2.0 operating system kernel running

on a dual-200MHz Pentium Pro-based PC. The Linux kernel was instrumented with hooks

to record the value of the timestamp counter at pertinent points in the execution path,

and a test application executed which measured the number of cycles consumed by both

traps and interrupts. Trap overhead was measured by reading the timestamp counter just

before and immediately after executing the sendto() system call, while interrupt overhead

was measured by recording discontinuities in counter values when spinning in a loop while

reading that counter.

Table 2.1 shows various time-based metrics calculated from the Linux kernel event log

and application timestamp counter readings. The interrupt period, Period, represents the

total application CPU time consumed by a single interrupt.

While the interrupt period is the simplest measure of OS intrusion it fails to take

account of the useful work done by the OS within that period. Judging exactly what is

`useful' work is somewhat subjective but we consider it to be all code whose execution

directly contributes to the progress of some application. This includes system call, device

14

169

Time (�s) Intrusion
Form of intrusion Period Work Overhead Latency Factor

System call/trap (sendto()) 32.3 24.8 7.5 4.1 1.30
Network interrupt (upComplete) 44.3 27.5 15.8 7.6 1.61

Table 2.1: Measured time costs of OS intrusion

System Call Cost
Operating System CPU Clock/MHz Time/�s Cycles

Linux 1.3.37 Pentium Pro 200 3 600
Linux 1.3.38 Alpha 21064A 275 2 550

Unixware 5.4.2 Pentium Pro 200 4 800
DEC OSF/1 3.0 Alpha 21064 150 11 1650

Table 2.2: Comparative costs of system calls

driver, and bottom-half functions (`soft' interrupts), but excludes �rst-level interrupt/trap

handlers, context switches, etc. For Table 2.1 the amount of time not incurred as overhead

is shown in the Work column, with the di�erence between this �gure and the interrupt

period i.e., the intrusion cost, being shown as Overhead. The Latency �gure, obtained

from the kernel log, shows the time between initiation of the interrupt and the beginning

of useful work, while the �nal column gives the intrusion factor, IF = Period=Work, as

de�ned earlier.

These numbers were obtained using the Linux operating system running on an x86

CPU, so one must question whether these results are representative of general-purpose

operating systems. In other words, would a di�erent operating system and/or CPU signi�-

cantly change the intrusion factor? The results presented by McVoy as part of the lmbench

benchmark suite [49] con�rm that this combination of operating system and platform is

at least as good, if not better, than similar systems.

Table 2.2 summarises these results: the leftmost 5 columns are reproduced from Table

7 of McVoy's paper, the rightmost column is simply the system call time (for the simple

system call measured by McVoy) in cycles i.e., the product of the preceding two columns.

15

170

Linux performs similarly on both x86 and Alpha CPUs, and actually outperforms com-

mercial operating systems, Unixware and OSF/1 respectively, on both platforms. Thus

one may conclude that the intrusion factors calculated for Linux on x86, at least for sys-

tem calls, are not tainted by either the choice of operating system or CPU platform. In

addition, the predominance of this platform combination in the network appliance mar-

ket means that the operating system designer is shackled to that platform|pecularities,

ineÆciences and all.

The relatively high IF measured above shows that the cost of intrusion is indeed signif-

icant if the frequency of intrusion is high enough. Even for interrupts which cause a large

amount of `useful work' to be accomplished, the IF is still fairly high. Thus one of the

primary goals for the design of a network appliance operating system is the minimisation

of mechanism intrusion cost.

16

171

Chapter 3

The Piglet Architecture

The preceding chapters described the motivation behind and need for a new operating

system architecture speci�cally designed for network appliances, which can be summarised

as:

� Unrealised potential for optimisation due to workload characteristics e.g., emphasis

on data movement rather than computation.

� Availability of cheap, high-performance multiprocessor systems which are ineÆciently

utilised by general-purpose operating systems.

� High overhead of existing operating system architectures, especially for system call

invocations which are critical in a network appliance application.

Thus the Piglet operating system was designed in response to these motivating fac-

tors. Before describing the design of Piglet it is illustrative to �rst consider some of its

predecessors.

3.1 The Evolution of Operating Systems

For many years every di�erent computer system had its own operating system. Computers

were expensive and slow, so the priorities of an operating system were to maximise the

availability of the machine to many users. Examples of such systems include time-sharing

17

172

devices

kernel
mode

user
mode

application process

operating system services

virtualisation primitives

physical resources

application thread

application processes

p
ri

vi
le

g
e

 b
o

u
n

d
ar

y

kernel

Figure 3.1: Monolithic operating system structure

systems e.g., the Compatible Time-Sharing System (CTSS) [15] and Multics [68], sup-

porting multiple user applications per machine, and virtual-machine systems e.g., IBM's

VM/370 [16] and the Bell Labs MERT [45], which supported multiple operating systems

on a single physical machine. However, in the early 1980s new trends in computer system

performance, namely the emergence of the high-performance, RISC CPU-based worksta-

tion, drastically changed the computing environment. Now individual users could each

have powerful computers for their own use|consequently the requirements of operating

systems changed accordingly.

Accompanying this change, and a factor in enabling it, was the increasing dominance

18

173

of the UNIX operating system. Because of the ready availability of the Berkeley System

Distribution (BSD) source code many workstation vendors developed variants of UNIX

as the operating system for their brand of workstation e.g., HP-UX, Solaris, Ultrix, Irix.

Hence UNIX and its derivatives soon became the predominant operating systems for high-

performance workstations and servers, since most workstations vendors also sold servers

with the same CPU architecture.

UNIX and all of its derivatives shared an architecture depicted in Figure 3.1, usu-

ally referred to as a monolithic kernel. The kernel executes in a privileged kernel mode

while applications execute in an unprivileged user-mode, thus prohibiting them from di-

rect access to the physical resources. The kernel provides high-level services to applications

e.g., network protocol stacks, �lesystems, as the only mechanisms by which they may use

physical resources. Thus virtualisation is accomplished by abstraction, hiding all of the

details of resource management from applications at the same time as sharing resources

among them.

In Figure 3.1 each application process is represented by a box enclosing one or more

threads of execution. The mapping of threads onto physical CPUs is not shown since the

dominant model of symmetric multiprocessing treats each CPU equivalently. The path

used by an application to access a physical resource is indicated by the large arrow.

3.1.1 The Microkernel

A monolithic kernel o�ers many advantages for general purpose applications, such as a

(mostly) uniform programming interface across all UNIX derivatives despite the hetero-

geneity of the underlying hardware platforms. However, it soon became clear that such

a kernel structure was too restrictive for certain applications. Speci�cally, when the ab-

stractions provided by the kernel did not closely match the requirements of an application

then eÆciency and performance were usually the casualties. As mentioned in Section 2.2,

the best example of this is probably Stonebraker's 1981 paper titled \Operating System

Support for Database Management" [85], wherein several examples of such mismatches

were encountered when a database management system was deployed on top of a general-

purpose operating system.

19

174

devices

kernel
mode

user
mode

server
process

p
ri

vi
le

g
e

 b
o

u
n

d
ar

y

application processes

microkernel

Figure 3.2: Microkernel-based operating system structure

The �rst attempt to solve this problem was to move operating system services out

of the kernel into server processes|the microkernel approach, shown in Figure 3.2. In

this model the kernel itself implements only the minimum of virtualisation services, del-

egating the provision of services such as networking and �lesystems to server processes.

Applications request services from these servers by sending messages to them using kernel-

provided interprocess communication (IPC) primitives. By virtue of supporting multiple

servers, each providing a di�erent set of services, the operating system can o�er di�erent

resource management strategies to di�erent applications, thus avoiding the \one-size-�ts-

all" problem.

While the microkernel approach promised exibility in resource management, early

microkernel implementations were crippled by the high overheads of IPC. Although later

microkernel systems, such as L3 [43] and L4 [29], vastly reduced the overhead of IPC,

other groups, such as the MIT Exokernel project [21], Cambridge's Nemesis kernel [42, 5],

20

175

devices

kernel
mode

user
mode

application processes

p
ri

vi
le

g
e

 b
o

u
n

d
ar

y sh
ar

ed
 li

b
ra

ry

kernel

Figure 3.3: Vertically-structured operating system

and Stanford's Cache Kernel [11], instead proposed an alternative solution|the vertically-

structured operating system.

3.1.2 Vertically-Structured Systems

Proponents of vertically-structured systems pointed out two aws in the microkernel design:

the overhead of IPC, and the scheduling problems caused by executing all service code

in application-level servers on behalf of other applications. More speci�cally, when an

application sends a request to a server it is necessary to transfer the application's scheduling

properties e.g., priority, to the server, and resource usage by the server be must accounted

correctly to the application. While some mechanisms have been proposed to deal with

this problem, such as Mercer's processor reserves [52], other researchers instead proposed

abandoning the microkernel architecture in favour of their vertically-structured systems.

In a vertically-structured system, as shown in Figure 3.3, the kernel still provides only

the lowest-level virtualisation primitives. In contrast to a microkernel, however, the kernel

21

176

kernel
mode

user
mode

devices

application processes

sh
ar

ed
 li

b
ra

ry

p
ri

vi
le

g
e

 b
o

u
n

d
ar

y

shared memory objects

kernel

Figure 3.4: Active kernel-based operating system

also provides applications with restricted but direct i.e., not indirectly through a server,

access to physical resources using low-level functions. In this way applications still retain

the ability to implement their own higher-level resource management functions, but without

having to act through an intermediary. Thus IPC overhead is eliminated and resources can

be accounted for more easily. Of course, general-purpose implementations of many system

services suÆce for the majority of applications, so shared libraries are often an integral

part of a vertically-structured system in order to provide those common functions.

3.1.3 The Next Step|an Active Kernel

Vertically-structured systems o�er the cleanest separation between virtualisation primi-

tives and higher-level service functions, thus minimising policy intrusion, but they fail to

22

177

address one of the problems motivating the need for a network appliance-speci�c operating

system|the overheads of mechanism intrusion. Consideration of the fundamental cause of

those overheads leads to the basis for an operating system structure which addresses that

problem.

In every prior operating system architecture|monolithic, microkernel or vertically-

structured|the kernel itself is a passive object, essentially a shared library with special

semantic properties e.g., executing in a privileged execution domain. As described earlier

(Section 2.3) the mechanisms used to enforce these semantics, such as privilege boundaries,

place an associated cost upon applications. The observation that these overheads are

inherent in a system where applications must frequently cross the privilege boundary lead

to an obvious conclusion: only by obviating the requirement to cross the privilege boundary

can the overheads be eliminated.

One system structure that has been proposed which removes this requirement is to

have applications execute in the same domain i.e., at the same privilege level, as the

operating system itself. Such systems fall into two classes: those where protection between

applications is enforced by the language in which the applications are written e.g., Java-

based operating systems, such as the University of Utah's Ka�eOS [4]; and systems with

no protection between applications e.g., MS-DOS. Unfortunately, network appliances �t

into neither class|their applications are not written in the appropriate languages for the

�rst class, and isolating application programs is obviously important for reasons of safety,

security and reliability. Hence the total elimination of privilege boundaries is not a viable

option.

Instead, a new operating system structure is proposed: the Active Kernel. Rather than

eliminating privilege boundaries, the active kernel instead permits communication between

applications and itself without either party crossing the privilege boundary. This is accom-

plished by using communication channels which can bridge the privilege boundary|shared

memory objects. Applications post messages to these objects requesting that a particu-

lar function be performed, the kernel subsequently retrieves the messages and processes

the request. Since these shared objects are entirely passive the action of an application

posting to one cannot be used to initiate the execution of the kernel without making the

23

178

objects protected, thus re-introducing the privilege-crossing overhead. The alternative so-

lution adopted is to have the kernel execute continuously, polling shared objects for posted

messages|hence the active moniker. The �rst architecture for such an operating sys-

tem is named Piglet|hereafter we use Piglet as a reference example of an active kernel

architecture.

3.2 Anatomy of Piglet

The structure of Piglet is shown in Figure 3.4. Much of the architecture is similar to a

vertically-structured system, speci�cally the separation of virtualisation primitives, pro-

vided by the kernel, and higher-level functions, implemented directly by applications and

shared-libraries. Piglet is signi�cantly di�erent, however, in the mechanism by which low-

level operations are invoked by applications: instead of executing a trap to cross the priv-

ilege boundary and execute kernel code directly a message is posted to a shared-memory

object; this message is subsequently retrieved and processed by the kernel.

An obvious practical implication of the Piglet architecture is that a processor must

be dedicated to making the kernel active, so the architecture is only applicable to multi-

processor systems. As described in the introduction to this thesis though, such systems

are becoming more commonplace and hence this does not seem too restrictive a require-

ment. In addition, since Piglet is targeted speci�cally at network appliances, rather than

general-purpose applications, the architecture can exploit speci�c characteristics of that

target application domain, for example the high frequency of system call invocation. This

is especially relevant to the multiprocessor requirement in light of experimental evidence

(Section 5.2) showing that kernel-intensive workloads do not scale as well on a multipro-

cessor under a conventional operating system as their computationally-intensive brethren.

3.2.1 Primary Features of Piglet

Piglet's key features, those arising from the motivating factors summarised at the beginning

of this chapter, are:

1. Dedicated kernel processor|kernel runs continuously.

24

179

2. Interrupt-free kernel|kernel is never interrupted.

3. Shared-memory communication|low-overhead service invocation.

Taken together these three features are responsible for the most signi�cant bene�ts

derived from the architecture. A dedicated kernel processor does not directly provide per-

formance or other bene�ts, but facilitates the other key design strategies. Eliminating

interrupts from the kernel drastically reduces complexity and also eliminates a signi�cant

source of mechanism intrusion. The use of shared-memory communication between ap-

plications and the kernel is crucial in providing a minimal-overhead service invocation

mechanism, but also alters the programming model.

3.2.2 Secondary Architectural Features

Before describing these key features of the Piglet architecture in more detail it is helpful

to summarise other aspects of the kernel design so as to place the central characteristics

within a complete system context.

� Commodity hardware platform: Piglet is designed to be hardware-neutral, since being

tied-in to a speci�c CPU platform or devices exposes the system to obsolescence if

the hardware does not evolve as fast as commodity technologies.

� Language independence: although programming languages such as Java, TAL [24, 60]

and Cyclone [33, 32] can o�er many advantages to systems programmers e.g., type

safety, veri�ability, run-time code generation, many network appliance applications

do not or cannot take advantage of them, often due to a large established codebase

or performance factors. Thus Piglet is designed to be language-independent.

� Capability protection model: Piglet uses a capability-based protection model, inspired

by the EROS [80] kernel, to provide access control, protection and security. In light

of security vulnerabilities discovered in common appliance applications, for example

the multiple aws recently unearthed in the BIND application [9], a more robust

security model than that provided by UNIX may help minimise the impact of such

problems.

25

180

At this point I will proceed to describe the three key principles of the Piglet architecture,

before detailing the prototype implementation of Piglet and illustrating some operational

properties of the system with an in-depth examination of the network subsystem.

3.3 A Dedicated Kernel Processor

The �rst and most fundamental design decision made in Piglet is that the kernel runs

continuously on a dedicated processor. This is necessitated by the elimination of interrupts

and the use of the shared-memory communication model, and di�erentiates Piglet from

other operating system architectures.

A kernel which runs continuously without interrupts can be made extremely simple|

at its most basic level it consists of a single thread of execution which performs kernel

functions ad in�nitum. Simplicity is derived from not having to design the kernel to

handle interrupts occuring at inopportune moments, and not having to explicitly make

kernel state accessible to trap and interrupt handlers. This principle will be discussed in

detail later (Section 3.4), but is important to bear in mind when describing the design of

the kernel.

The set of functions which must be performed by this top-level function are essentially

the same as those executed by a conventional operating system kernel. However, the

nature of the Piglet communication mechanism, also described later (Section 3.5), means

that Piglet must poll for service requests rather than waiting until an application initiates

processing by issuing a trap instruction. Thus the structure of the top-level function,

which shall be referred to hereafter as main by analogy with the top-level function in a

C program, consists of the composition of a number of polling modules, each of which is

responsible for a di�erent section of the kernel.

Figure 3.5 shows a simple representation of the �rst-level modules which comprise

the Piglet kernel. It is important to point out that other modules could, and would,

be incorporated into main to handle other subsystems e.g., block devices, but only a

representative subset are shown here. Several of these modules are described in detail

subsequently, when the architecture of the Piglet network subsystem is introduced, but let

26

181

main

CPM

client
page

monitor

ISS

integrated
service

scheduler

HCM

host
comm.
module

user−space
frameset
controller

UserFSet

network
interface
manager

NIFmgr

Figure 3.5: Structure of the main function

us examine the others now.

3.3.1 Client Page Monitor

The Client Page Monitor provides communication between the Piglet kernel and its clients

e.g., threads of application programs. The client page is a shared-memory object which is

mapped into both kernel and client address spaces, thus permitting either to read or write

from the the client page at any time. The client requests operations be performed by writing

Posted Service Requests to the client page. The client page monitor subsequently polls the

client page and retrieves those PSRs. Once the operation requested by the PSR has

completed the kernel returns status information via the client page. The operation of the

client page monitor is expanded upon in the description of shared-memory communication

in Section 3.5.

3.3.2 Integrated Service Scheduler

The Integrated Service Scheduler is responsible for executing additional functions other

than the �rst-level polling modules which are integrated into the Piglet kernel. These

functions are encapsulated into service modules, an example group of which are shown

27

182

Service Periodic Function Rx Handler Tx SBlk

ARP module Yes Yes Yes
ICMP module No Yes No

Virtual Clock packet scheduler Yes No Yes

Table 3.1: Network-related services in the Piglet kernel

in Table 3.1. For each service the table shows which of three functions it provides: a

periodically-executed service thread, a packet reception (Rx) handler, and a packet transmit

(Tx) service block (SBlk). The periodic function is executed by the scheduler either after

an elapsed time, or when the state of the service changes. The packet reception handler is

installed by the service into the Piglet packet �lter to demultiplex service-speci�c packets

appropriately; the transmit SBlk can be used by applications to have the service perform

special processing on packets to be transmitted.

As examples of the type of processing performed by these service functions consider

the services shown in Table 3.1. For the purposes of this description it is suÆcient to state

that a frameset is the system object used by both the application and kernel to represent

a network ow endpoint; see Section 4.2 for a more detailed description. The ARP module

ful�lls dual roles: it handles ARP requests sent to the Piglet system, and prepends a link-

level header to packets before transmission. Incoming requests are processed by the Rx

handler, link-level headers prepended by the ARP SBlk. The latter is obviously a common

requirement, but the exibility to have this function applied only to framesets with the

SBlk attached is useful for network protocols which supply the link-level header themselves

e.g., ARP itself. Finally, the periodic function is used to update ARP cache entries and

ush stale ones.

The other services shown in Table 3.1 are fairly self-explanatory: the ICMP service

is used to process ICMP packets received by the Piglet kernel from the network, while

the Virtual Clock service provides an SBlk which can be used to apply the Virtual Clock

packet scheduling algorithm [92] to outgoing packets; other SBlks could be used to provide

alternative packet-scheduling mechanisms e.g., token bucket, leaky bucket. The ability to

28

183

perform packet scheduling is obviously important in providing QoS guarantees, as demon-

strated in an early implementation of Piglet [63].

One �nal noteworthy feature of the service scheduler is the use of separate stack frames

for each service to provide a rudimentary form of cooperative multithreading. When

scheduling a service's periodic function the scheduler switches from the main Piglet stack

frame to the service's private stack frame|the application yields control back to the sched-

uler when either processing is completed or a `reasonable' amount of time has passed. The

question of how long a service should execute before yielding to the scheduler is obviously

complex, but must be short enough that Piglet remains responsive to external requests.

Such a form of cooperative scheduling is thus only feasible for integrated services which

can be trusted to behave as good citizens, and not appropriate for arbitrary code modules.

The usefulness of private stack frames, which permit an application to yield control at

almost any point in execution without having to explicitly save state, was demonstrated

in the Piglet MPEG video decoder [64]|when the frame being decoded is incomplete the

service yields to the scheduler until the Rx handler noti�es the scheduler that new data

has arrived.

3.3.3 Host Communication Module

The �nal module shown in Figure 3.5, the Host Communication Module, is required when

Piglet is implemented in a hybrid system alongside a conventional operating system. De-

tailed description of this design is deferred until Chapter 4, but in essence both operating

systems coexist on a shared hardware platform. Because both execute in kernel-mode

i.e., with direct access to physical resources, it is important to coordinate the use of those

resources. The host communications module accomplishes this task in Piglet|see Sec-

tion 4.1.3 for a description.

3.3.4 Scheduling in the Polling Function

An important consideration in the design of main is the weight which is given to each �rst-

level polling function. In the simplest design each would be executed equally frequently,

but this is obviously not the only strategy. A relatively simple modi�cation is to attach

29

184

static weights to each function, perhaps based upon expected system workloads|an in-

frastructure appliance, for example, spends a greater proportion of CPU time processing

network packets than control application requests, so the device polling function should be

assigned a greater weight than the client page monitor. A more sophisticated enhancement

would be to introduce dynamic adaptation into the polling function|as the system work-

load evolves over time main can adjust the function weights accordingly. Unfortunately

such enhancements are beyond the scope of this thesis.

The structure of the polling function is crucial to the behaviour of the system. A

compromise must be struck between polling objects suÆciently frequently to guarantee

acceptable response time to changes of state, but not wasting too much time polling objects

which infrequently require processing. Thus one can view the composition of main as a

classic scheduling problem where each component of main is a scheduled entity with its

own properties e.g., deadline, priority, period.

Extending the polling function beyond the basic round-robin approach, whether by

the simple enhancement of attaching a weight to each function, or implementing a fully-

featured scheduler, introduces additional complexity into a system which had previously

possessed simplicity as a key virtue. However, it is important to recognise that this com-

plexity takes a di�erent form from that which is so troublesome in an interrupt-driven

kernel, the complexity arising from having to deal with interrupts in a multitude of loca-

tions. Scheduling complexity is a design challenge|the implementation of a scheduler for

polling functions is likely to be relatively simple, so the likelihood of introducing obscure

bugs is low. Interrupt-handling complexity is an implementation challenge though|if the

designer/implementor makes a mistake then the resulting bugs often render the system

unstable.

3.4 No Asynchronous Interrupts

The second primary design decision incorporated into Piglet is the elimination of asyn-

chronous interrupts. The motivation to do so was twofold: �rstly, the overhead of the

30

185

interrupt mechanism is typically very high|recall the intrusion factor of 1.61 from Sec-

tion 2.7; and secondly, asynchronous interrupts also add signi�cantly to the complexity of

an operating system kernel. This complexity arises from the need to update internal data

structures atomically in order to guarantee that the kernel's internal state remains con-

sistent. The most common approach to doing so is to disable interrupts while executing

these critical regions, however this approach is often error-prone, since the programmer

must be aware of every possible interaction between interrupts handlers and internal data

structures, and can increase interrupt latency.

Compelling evidence of the complexity and error-prone nature of interrupt-driven ker-

nels is given by Engler's paper [20] discussing the use of `meta-level compilation' to detect

semantic errors in the Linux 2.3.99 kernel. Of particular relevance is the use by the compiler

of simple, high-level speci�cations to detect violations of semantic constraints e.g., inconsis-

tent interrupt states. This technique uncovered approximately 60 errors where a function

which could block was called with interrupts disabled, potentially leading to deadlock, and

another 40 situations where the interrupt state was not correctly restored when abruptly

returning from a function.

Thus it was decided at an early stage in the Piglet design that asynchronous interrupts

were to be avoided whenever reasonably possible. Interrupts are only to be used to indicate

catastrophic errors e.g., a hardware failure, where the kernel is not expected to be able

to recover gracefully. Since the majority of input-output devices normally use interrupts

to request processing from the kernel i.e., the execution of a device driver, an alternative

mechanism must be used in Piglet. The active nature of the Piglet kernel makes polling

the obvious choice.

This change e�ectively inverts the conventional relationship between a device and its

driver: rather than the device requesting that the driver perform some operation on its

behalf only when the device state changes the driver instead frequently queries the state

of the device to determine which, if any, functions to execute. An important concern in

such a scheme is maintaining the kernel's responsiveness to device state changes|how

frequently must a driver poll the associated device? Many existing devices were designed

under the assumption that interrupts are the primary means of communication with the

31

186

operating system (exceptions include the UPenn ATM adapter [88]), and consequently

that prompt processing can be triggered by raising an interrupt. Hence the nature of the

device often dictates a relatively high polling frequency. On the other hand, the increasing

sophistication of devices has reduced this problem: as an example, the adoption of direct

memory access (DMA) by devices in preference to programmed I/O (PIO) has reduced

the interrupt burden placed on the kernel since the driver need not be invoked to transfer

every unit of data from to/from the device's bu�ers.

One possible hurdle in the elimination of interrupts is the possibility that some devices

may only be able to signal certain state changes by raising an interrupt, thus making

polling not entirely e�ective as a substitute. It is anticipated that such devices would be

handled by creating a service module that would be marked as needing to be scheduled

by a simple `stub' interrupt handler which has no access to general kernel data structures.

Such an approach is taken in the Nemesis kernel [42], where interrupts are handled by

schedulable regions, and Swift [12], where interrupt handlers schedule a process with a

real-time deadline to perform the actual work.

3.5 Shared-Memory Communication

The �nal, but perhaps most important, design decision embodied by Piglet was that shared

memory objects would be used as the primary communication mechanism between appli-

cation programs and the kernel. The motivation for this was the observation that the

conventional mechanism of traps imposes overhead on the application due to the privilege

boundary which must be crossed by the trap. Shared memory eliminates this overhead

since the object used for communication is mapped directly into the application's address

space.

Using shared-memory objects as the primary communication channel in a conventional

passive kernel architecture is not possible since an active entity to service those objects

will not generally exist. The active kernel facilitates this mode of communication since the

shared objects can be polled suÆciently often to provide the application with reasonable

guarantees of service promptness.

32

187

As described above, the primary task of the Piglet kernel is polling applications and

devices to service their processing requests. In order to maintain overall responsiveness the

kernel must be able to poll objects with very low overhead, else polling itself introduces

costs similar to those which the architecture is designed to reduce, namely the extra cost

to determine when a speci�c function should be performed on top of the cost of performing

that function.

The design of the various shared-memory objects to be used for communication is of

the utmost importance. Several properties must be achieved:

� Simplicity: a complex communication protocol would negate many of the advantages

obtained by eliminating the trap overhead.

� Low common-case cost: the common case when an object is polled is to perform no

action, so this determination must be quick and easy.

� Lock-free: the application and Piglet access objects concurrently, creating obvious

potential for conict. Locking to enforce consistency should be avoided due to the

negative implications of having an application lock a kernel data structure.

� Compact: one solution to the problem of concurrent access to objects is to copy them

to a private location, so making the objects small is advantageous.

In addition to these factors, the context in which the shared object structures are to

be employed must also be taken into consideration. For example, network packets passed

from kernel to application or vice versa could potentially form an arbitrarily long sequence,

so a structure which is not inherently of �xed length is preferable.

The data structure which was deemed to be most suitable was a queue using non-

blocking synchronisation methods [53] to provide internal consistency. Ring bu�ers also

meet all of the primary criteria but their �xed size precludes them from being used as

network queues, and it is was deemed undesirable to have a multiplicity of shared object

structures. The design of the queue is such that it can be accessed by multiple writers

without additional concurrency control, but only a single reader is permissible|the case

33

188

Dstatus bits

application
data

next

head

status bits

application
data

next

tail

status bits

application
data

next

ca
ch

e
lin

es
n

Figure 3.6: Basic structure of the Piglet shared queue object

of multiple readers is not considered common enough to necessitate being handled directly

by the queue.

The basic queue structure is shown in Figure 3.6. Associated with each queue are head

and tail pointers|the head points to the �rst/oldest element in the queue, the tail points

to the last/most recently added element. At least one element is always retained in the

queue, so both pointers are always valid. Each element is an integer number of cache lines

in size: violating this condition creates false sharing between queue elements when the

kernel and application access adjacent elements concurrently, imposing unnecessary cache

coherency misses. The �rst word of each element is a pointer to the next element; the

second word is used for element status, further explained below; the remaining words are

available for application-speci�c use, typically as a message payload when each element

constitutes a message.

The operation of the queue is as follows:

1. The queue is initialised with an empty element. The contents are usually unimportant

as long as the next pointer is null (indicating no subsequent element) and the done

(D) bit is set in the status word. Both head and tail pointers point to this element.

2. A new element is enqueued by �rst preparing the element in memory, atomically

34

189

exchanging the tail pointer with the address of this element, then updating the next

pointer of the old tail element to point to the new element.

3. The queue is polled by �rst checking the done bit: if it is not set then the head element

is returned. If the bit is set, indicating the element has already been processed, the

next pointer in the head element is checked: if it is null then no new element is

available, otherwise the head pointer is updated and the new element returned to

the polling function.

4. Once an element has been processed the processing function sets the done bit if the

element should not be processed again|an example of a situation when an element

is not marked done is when many queues are polled but only one of them is selected

for processing.

Consistency of the queue between multiple writers is maintained by using an atomic

exchange operation e.g., the xchg instruction in the x86 architecture or a load-linked/store-

conditional pair on most RISC architectures, to update the tail pointer: consider two

writers A and B simultaneously enqueueing elements a and b respectively. Since the

exchange operation is atomic, and the CPUs serialise access to a shared memory location,

one of the two writers must execute its exchange operation �rst. Assume it is A, which

then updates the old tail element's next pointer to point to a. Immediately after A's

exchange completes B 's will proceed|the new tail pointer, a, is exchanged for b and a's

next pointer updated to b. This dictates that applications must set the next pointer to

null before performing the exchange and not change the pointer subsequently. There is

also a window of time within which the queue becomes temporarily detached i.e., between

exchange completing and the old tail element's next being updated. This is not problematic

from the reader's perspective since the old tail's next pointer is null before being updated,

so the queue appears to have not been updated. However, if an interrupt occurs in this

window of time then consistency may not be restored until after a large delay.

This queue design places two constraints upon both readers and writers: queue ele-

ments need to be accessible to all parties, either at the same address in all address spaces

35

190

data 5/link

data word 0

data word 1

data word 2

data word 3

data word 4

inherited
from queue

object

next

status

status word

refstypereserved

reserved
done

signal
speculate

Figure 3.7: Structure of the Piglet Posted Service Request

or by translation; and both parties must adhere to the above protocol. Obviously a mali-

cious entity could easily corrupt the queue, but the simplicity of the structure makes such

corruption easy to detect.

This structure has been used in several places in the current kernel implementation,

most signi�cantly as the mechanism by which applications invoke kernel services, and as

the fundamental building block for a network communication endpoint. These examples

are described in the following section and Section 4.2 respectively.

3.6 The Piglet-Application Interface

A key characteristic of any operating system is the programming interface it exposes to

application programs. In conventional operating systems the synchronous trap mechanism

used closely resembles a function call interface, so system calls can most naturally be pre-

sented to applications in that manner. An active kernel, however, presents an altogether

di�erent programming model due to the fundamentally di�erent mechanism used for com-

munication. Note that the issue here is one of low-level semantics of the interface rather

than the details of what functions it provides; unfortunately the boundary between these

two properties is often blurred.

36

191

3.6.1 API Basics

In Piglet the application programming interface is constructed on top of the shared memory

queues described above. As stated earlier, every application thread has a client page

associated with it, either private to that thread or shared with other threads. The client

page consists primarily of a shared queue into which the application can post messages|

Posted Service Requests (PSRs)|requesting that the kernel performs a speci�ed operation

on the application's behalf. The structure of a PSR is shown in Figure 3.7. The client

page contains a �xed-size array of PSRs in order to eliminate the need for allocation and

deallocation.

Each PSR occupies exactly one cache line, 32 bytes on the x86 CPUs used in the

prototype implementation. The �rst two words of the structure are inherited from the

shared queue structure, although only the done bit is reserved by the shared queue protocol.

The remaining six words in the PSR are used to pass data between application and kernel,

with the last word also being used in some circumstances as a link pointer. The functions

of the various unreserved bits in the status word are as follows:

� Reference bits (6) are used to indicate whether the content of the corresponding data

word is a value or reference. References are used by an application when constructing

sequences of PSRs, their use is described further later.

� Type �eld is used to specify the operation being requested by the application.

� Speculate bit speci�es whether the processing of this PSR is conditional upon the

success of a preceding PSR operation. If so then the link pointer (word 5) points to

the preceding PSR.

� Signal bit is set when the kernel should send a signal to the application upon com-

pletion of this operation.

The simplest examples of a PSR are created by setting the type �eld to indicate the

operation being invoked and passing the values of the operation's parameters in the data

words. Piglet uses capability references to identify kernel objects e.g., network communi-

cation endpoints, virtual memory regions, physical memory pages; a capability reference

37

192

can be represented in a single data word. After processing the PSR the kernel stores a

return code and other operation-speci�c data in the data words for subsequent retrieval

by the application.

3.6.2 Asynchronicity Creates Concurrency

While the use of PSRs appears similar to a function-call interface, the biggest di�erence

arises from the nature of the shared queue object to which PSRs are posted. Because the

queue is merely a container for elements the act of posting does not immediately initi-

ate kernel processing. Instead, the PSR is processed when the kernel next polls the client

page, thus introducing a decoupling between application and kernel. This asynchronicity of

service invocation is the biggest di�erence between an active kernel API and that of a con-

ventional operating system, raising interesting questions about application programming

models.

An asynchronous programming model has both advantages and disadvantages when

compared to a conventional synchronous interface. The primary advantage is that the

decoupling provides implicit concurrency between the execution of the application and

the kernel. However, the application programmer is faced with an unfamiliar program-

ming model and must restructure their application to obtain maximum bene�t from this

concurrency.

A practical side-e�ect of having an asynchronous service invocation mechanism is that

noti�cation of the success or failure of an operation is no longer a simple matter of returning

the appropriate code since the application is unlikely to be waiting for that return value.

While Piglet does update each PSR with a completion code which the application can

poll to determine when the operation has completed and its outcome, the kernel also

uses asynchronous signals, analogous to UNIX signals, to indicate operation completion.

Normally a signal is only sent to the application if an operation fails, but the signal bit

can be set to request a signal even if the operation is successful. This facility can be used

by an application to block until the PSR completes if it cannot proceed without the result.

38

193

3.6.3 References Arguments and Speculation

This programming model would perform very poorly if an application had to post one

PSR and wait for the results it generates before being able to use them in the next PSR.

Hence Piglet provides two features to reduce such ineÆciency: reference arguments and

speculative processing.

The reference bits in the status word allow an application to designate particular argu-

ments as being references rather than values. A reference argument speci�es a data word

of another PSR as the target of the reference, which is dereferenced by the kernel when

it processes the referring PSR. Reference arguments permit that PSR to use values which

were unknown to the application at the time it posted the PSR to the client page. An

example of this usage occurs when one PSR allocates a kernel resource which is then used

by a subsequent PSR|the capability reference for the kernel resource is created during

processing of the �rst PSR so the value is not known to the application at the time that

it posts the second.

Speculative processing is used by an application to notify the kernel that one PSR

is dependent upon another|if the �rst was not processed successfully then the second

should be ignored. Speculation is useful in two distinct situations: when the second PSR

is contingent upon either a state change or output produced by the �rst, and when the

application does not wish to perform the second operation if the �rst did not succeed, even

though it could. This latter case arises when two operations refer to a sequence of data|if

the �rst unit was not transmitted on the network (say) then there is no point transmitting

the second.

The use of both references and speculation are revisited in Section 4.2, which describes

the Piglet networking subsystem in detail and includes an example sequence of dependent

PSRs.

3.6.4 Optimistic Service Invocation

The ability to chain posted service requests together in this manner is only bene�cial

to the application if the likelihood of an invocation failing, and thus negating execution

of all subsequent elements in the chain, is low. This is a general question of interface

39

194

design rather than a speci�c Piglet issue, but one important point gleaned from the Piglet

programming interface is worth mentioning.

First, consider the most common causes of system call failure (other than invalid input):

insuÆcient resources and access prohibition. Both failure modes usually arise from a single

class of function, namely resource allocation. Therefore, in order to segregate the most

common causes of failure, high-level functions should be decomposed to isolate resource

allocation from resource manipulation. This is in fact a natural distinction since the two

types of operation are usually not intermingled but rather separated into disjoint phases

of a higher-level operation. Thus an application can construct a sequence of resource

manipulation primitives with reasonable con�dence that failure is unlikely.

This programming model �ts conveniently into the paradigm espoused by proponents

of vertically-structured systems, of which Piglet is an example. Such systems only imple-

ment low-level primitives within the kernel, thus imposing a decomposition of high-level

functions. A good example of the separation of resource allocation from manipulation is

Nemesis's Application Device Channel architecture [5]: resource allocation is performed by

an application-level server which establishes appropriate channels for the client application

to directly manipulate resources.

40

195

Chapter 4

Implementing Piglet

A prototype implementation of Piglet provides the best means of evaluating the design

principles described in the previous section. Constructing an entire operating system from

the ground up requires a large amount of `grunt' work, consequently the Piglet proto-

type was engineered as an extension to a host operating system, thus creating a hybrid

architecture.

Another practical decision taken early on was to only implement a single functional

subsystem in the Piglet prototype, one that is suÆcient to evaluate the key characteristics of

Piglet. Construction of a hybrid system permits delegation of the remaining core functions

e.g., �lesystem, processes, virtual memory, etc., to the host system in order to support the

test framework. Since Piglet was designed from the very beginning as an operating system

for network appliances the obvious choice of functionality to implement in the prototype

is the network subsystem.

4.1 Building the Linux/Piglet Hybrid

Linux was selected as the host operating system for the �rst Piglet implementation, pri-

marily because it had the most mature support for multiprocessor systems at the time the

prototype was begun. It is important to note though that Piglet could coexist equally well

with any other host operating system, such as one of the `free' 4.4BSD variants.

The Piglet prototype was built to coexist with the Linux kernel, allowing applications to

41

196

kernel
mode

user
mode

application processes

sh
ar

ed
 li

b
ra

ry

p
ri

vi
le

g
e

 b
o

u
n

d
ar

y

shared memory objects

devices

(a)

(b) (c)

LinuxPiglet

Figure 4.1: Hybrid Linux/Piglet kernel structure

utilise functionality from both kernels. The system was designed such that Piglet would be

hidden from the Linux kernel, except for a number of well-placed hooks into the Linux ker-

nel which are used by Piglet to acquire physical resources e.g., memory, CPUs. Apart from

the connections to those hooks the Piglet prototype is essentially a faithful implementation

of the architecture described earlier. Figure 4.1 shows the structure of the Linux/Piglet

hybrid. The arrows labeled a, b, and c respectively represent applications accessing devices

in three di�erent ways: directly through Piglet, through Linux then Piglet, and directly

through Linux.

42

197

4.1.1 Linux Kernel Hooks

Supporting Piglet alongside the Linux host required minor changes be made to the kernel

itself; the small scale of these required changes can be credited in part to the reasonably

modular structure of the Linux kernel. Modi�cations were made in only three areas:

� Scheduling: Piglet requires a CPU dedicated to the active kernel, so the scheduler

must be modi�ed to support such an allocation.

� Concurrency control: a small number of data structures must potentially be accessed

concurrently by both Piglet and Linux, necessitating additional concurrency control.

� External interfaces: the interface exported by the Linux kernel is intended for use by

device drivers, not another operating system, so must be enhanced with the additional

necessary functions.

The scheduler was modi�ed in two ways: the addition of a data structure storing the

set of schedulable and interruptible CPUs, and the ability to force a particular task (kernel

thread) to be executed on a given processor. These two features are used to initialise the

Piglet kernel by removing a processor from the schedulable set and forcing it to run the

Piglet kernel thread.

Additional concurrency control beyond that used by Linux was required due to the

simple nature of the mechanisms already put in place. In the version of the kernel that

Piglet is based upon, 2.0.30, SMP support is somewhat primitive so a single, global lock is

used to serialise access to the kernel. In the hybrid prototype it is necessary to run Piglet

`outside' this kernel lock, but certain data structures must also be accessed by Piglet,

thus violating the kernel's assumption that, at any given time, only one CPU is executing

kernel code i.e., accessing those structures. An example of such a structure is the run-

queue|when Piglet needs to make an application thread runnable it must update the

run-queue, but the kernel may be doing so simultaneously. In order to keep the prototype

implementation simple a spin-lock is used to serialise access to the run-queue.

Minor interface changes were necessary because Piglet requires more services from the

host operating system than a typical device driver e.g., the ability to send inter-processor

43

198

interrupts, and functions to release and reacquire the global kernel lock. This usually

entailed nothing further than adding those functions to the kernel's exported symbol tables.

The other features Piglet required from the Linux kernel, mostly needed in the initial-

isation process, were readily implemented using existing functions and data structures|

Piglet appears to Linux as an ordinary block device. For example, Piglet is dynamically

loaded as a module when a control program accesses the appropriate block device �le, the

module initialisation function is used to acquire memory and a CPU for the Piglet thread,

and �nally device ioctl functions are used to con�gure and run the Piglet kernel.

4.1.2 Using Host Services Within Piglet

The biggest advantage obtained by constructing the Piglet kernel to coexist alongside

Linux is that many of the Linux kernel's functions can be used by Piglet. At the simplest

level, Linux kernel functions are utilised to perform routine or simple functions in Piglet,

such as page-table manipulation and the formatting of log messages. More important,

however, is Piglet's ability to share application processes with Linux, thus permitting

those applications to use services provided by both kernels. This ability was essential in

writing programs to evaluate the Piglet services without having to also develop every other

aspect of the system to a level suÆcient to (say) load and execute programs entirely using

Piglet functions.

One particularly challenging problem arising from the sharing of processes is how to

schedule those processes in a manner which maintains consistency with the Linux scheduler.

For example, consider a process which is receiving network packets from Piglet. The process

checks to see if a packet is available|if not, that process blocks until a packet is received.

Unfortunately a race condition exists between checking the network queue status and the

application being blocked|consider a case where Piglet receives a packet just after the

application checks its queue, sees that the application is still runnable and so updates the

queue status but doesn't send a signal, thus causing the application to block unnecessarily,

perhaps inde�nitely. However, such a �x would require considerable modi�cation of the

Linux scheduling mechanism, so instead Piglet is implemented to act conservatively and

always send the wakeup signal; this is essentially the same behaviour as a conventional

44

199

network interface that raises an interrupt regardless of what the kernel may be doing.

Piglet also uses fast wakeup signals to optimise scheduling in certain cases. Applications

can install a fast wakeup interrupt handler which can be used by Piglet to reschedule the

application without the overhead of the usual Linux mechanisms e.g., acquiring the kernel

lock, running the scheduler, restoring unnecessary state. When a signal is to be sent to

an application e.g., due to an error processing a PSR, or network packet reception, if

Piglet can determine that the application blocked itself using the piglet block system

call then it sends the appropriate inter-processor interrupt vector to one of the application

CPUs, causing the fast wakeup handler to be executed which switches context driectly to

the now-runnable application i.e., without invoking the scheduler. Since the fast wakeup

handler does not acquire the kernel lock it must determine that no other CPU is currently

executing in the kernel|if any CPU is holding the kernel lock the fast wakeup handler

instead calls the regular reschedule interrupt handler.

Memory allocation is also tricky in a dual-kernel environment due to the need to main-

tain consistent data about how physical memory pages are being used. For the prototype

implementation Piglet acquires large chunks of memory from the Linux kernel at initialisa-

tion, then uses its own internal memory allocator to subdivide these chunks into page-sized

or smaller blocks. Access to memory allocated by Piglet is occasionally required from Linux

system calls e.g., when creating client pages, thus requiring that the memory allocation

functions be synchronised. To minimise the number of synchronised accesses performed

by the Piglet main function a service module maintains a cache of private memory blocks

for use within the Piglet kernel.

4.1.3 The Host Communications Module

As mentioned in Chapter 3, the hybrid implementation of Piglet communicates with the

Linux kernel using a service module, the Host Communications Module (HCM). This mod-

ule performs two main functions: maintaining TLB consistency with Linux and providing

a virtual device interface through which Linux may access those network devices managed

by Piglet.

Because the x86 architecture does not provide hardware mechanisms for maintaining

45

200

TLB consistency it is the responsibility of the operating system to do so. In the sym-

metric multiprocessing Linux kernel this is accomplished using broadcast inter-processor

interrupts, sent by the CPU updating the page tables, which cause all other CPUs to ush

their TLBs. Because the Piglet kernel is designed to be interrupt-free, this mechanism

cannot be used to keep Piglet consistent with the Linux kernel. Fortunately, a solution

already existed in Linux: because a spinlock is used to synchronise access to the kernel,

including to execute interrupt handlers, the system would deadlock if one CPU modi�ed

a page table entry, sent \invalidate TLB" messages to the other CPUs, then waited for

them to acknowledge this action, since none of them would be able to enter the kernel

to acknowledge the interrupt. Linux solves this problem by having CPUs check a global

memory ag while attempting to acquire the kernel spinlock|if the ag is set then the

TLB is invalidated and the request acknowledged before continuing to attempt to acquire

the lock. Piglet just uses the same mechanism, polling the status word every time the

HCM service function is executed.

The second major function of the HCM is to provide Linux with a virtual device through

which it can access the Piglet network devices. This is necessary because it is not possible

to have two device drivers, Piglet and Linux, both attempting to control a single physical

device. Instead, the Piglet driver is used and a generic Ethernet device presented to the

Linux kernel. This can be used for both sending packets from non-Piglet applications

through the Piglet network devices, and also when Piglet receives network packets that it

does not know how to handle|the HCM provides a default receive handler which passes

packets to the Linux virtual interface.

4.2 The Piglet Network Subsystem

At this point let us consider the structure of the prototype network subsystem as a detailed

example of how architectural features of Piglet are implemented and used. Figure 4.2 shows

this structure, representing both data ow and module interactions. Transmitted packets

ow from the client to the network interface controller (NIC) down the left-hand side of

the �gure, received packets ow up the right-hand side.

46

201

client
frameset Tx Rx

queues

ARP

device driver

frameset
service
blocks

(SBlks)

frame demuxframe mux packet
filter

TCP/IP service
Rx
handler

Figure 4.2: Network module structure

Piglet clients, either application programs or a host operating system e.g., Linux in

the hybrid implementation, use network services through a frameset|the fundamental

network communication endpoint in Piglet. Clients obtain framesets from the kernel using

the posted service request mechanism (see below, Section 4.2.3), subsequently the frameset

itself is used as a shared memory object for direct communication between the client and

Piglet. Each frameset consists of internal control �elds (not shown), plus two shared

memory queues that hold transmitted and received frames. Each frame, comprising a

frame header and a small number of possibly non-contiguous data bu�ers, represents a

single network packet; Piglet does not perform fragmentation of frames into packets. The

structure of both framesets and frame headers is depicted in Figure 4.3.

Only the client-visible part of the frameset structure is shown in Figure 4.3. The queue

47

202

queue pointers

header n

header n−1

header 0

header 1

frame
headers

data 2

data 1

data 0

len 1 len 2

len 0tot. len

chain

next

user

user word 0

user word 7

user
data

words

data
blocks

n+1page block n
data

data
block 0

frameset structure

page 0

statsys flags

frame header structure

page 1

Figure 4.3: Frameset and user-level frame header structure

pointers|tail pointer for the transmit queue, head for the receive queue|are stored at the

beginning of the structure; the complementary pointers i.e., transmit head and receive tail,

are required only by the Piglet kernel, so are not made accessible to the client. Following

some miscellaneous frameset state �elds, are n frame headers each with the structure shown

on the right side of the �gure. Finally, a virtual mapping for n pages is placed after the

headers, one page per header, although not all virtual pages are backed by physical pages

at any given time.

Part of this structure is dictated by the prototype implementation using very simple

48

203

mappings from headers to corresponding data blocks for user-level framesets. Such a

mapping is necessary due to the fact that a physical page of memory has a di�erent

virtual address from each of the application and kernel perspectives|a legacy of the hybrid

Linux environment. Piglet thus constrains each frame header to data contained in the

corresponding virtual page (as seen from the application perspective), and uses the frame

header index to �nd the data block. This constraint could easily be relaxed in future

implementations.

Each frame header consists of a number of �elds. Figure 4.3 shows these �elds for a

user-level frame header: for a kernel frame header the �rst half of the header is the same,

but the user words are replaced with auxiliary �elds e.g., reference count, timestamp. Only

the common �elds are of particular interest, so the internal kernel �elds are not discussed

further.

The next pointer is inherited from the common queue element structure described

earlier, but frame headers use a status byte rather than a single done bit; the function

of this status byte is described below. System ags are reserved for kernel use, while the

user ags �eld is available for application-speci�c purposes. The chain pointer is used to

create linked lists of frame headers|this is a common enough occurrence in protocol stack

implementations e.g., a TCP retransmit queue, IP refragmentation queue, etc., to merit a

dedicated �eld. Four half-word sized length �elds indicate the total length of the packet

and the length of each of up to three data blocks, pointers to which are stored in the �nal

three words. The ability to specify three non-contiguous data bu�ers is used to perform

scatter-gather DMA when transferring data to/from network devices.

As a frame is transmitted or received it undergoes various state changes. This state

must be exposed to both the Piglet kernel and the associated application so that it can

manage its use of the headers. Figure 4.4 shows the state transition diagram associated with

a frame. Frames can be in one of 8 states, represented as circles, encoded as shown within

the circle. All valid transitions are shown on the graph: the text label associated with each

transition indicates the action which triggers the transition, and a C-syntax expression

indicating how the state variable is atomically modi�ed by that action; cmpxchg(x, pending,

skipped) means \if the current value of x is pending then change it to skipped, otherwise

49

204

dequeued

xfer

queued

skipped

pending

prexfer

free

x=101

x=100

x=000

x=111

x=011

x=010

x=001

x+=1

x+=1

cmpxchg(x, pending, skipped)

x^=001

x^=100x^=111

process

enq

skip

process

dequeuedone

dequeue done

get

Figure 4.4: Frame header state transitions

do nothing", executed atomically. The meaning of each action is as follows:

� get: mark a free frame as being in-use by the application.

� enq: enqueue a frame which has been prepared by the application.

� process: begin processing the frame e.g., pass to the network device for transmission.

� cancel: skip processing if not already begun.

� done: frame processing complete.

� dequeue: remove frame header from queue.

50

205

Most of the states themselves are self-explanatory, however the steps by which a frame

moves from pending to free are worth explaining. Consider a frame being transmitted by

an application: after being enqueued on the transmit queue and subsequently selected by

the Piglet kernel for transmission the process action is used to indicate that the frame is

being processed e.g., is being transferred by DMA to the network device. In this state the

frame header structure is being used by both the network device, to conduct the DMA

transfer, and the queue reader and writer(s), as the head element.

One of two possible events can occur next: if processing completes before another frame

is enqueued then done is used to indicate that the network device no longer needs access

to the frame|however the application cannot reuse this frame yet since it still constitutes

the head of the queue. Alternatively, another frame could be enqueued, permitting the

dequeue operation to be performed|in this state though the device is still accessing the

frame, so again it cannot be reused yet. Only when both done and dequeue have been

performed is the frame available for reuse; by careful choice of the state representations and

the transition operations every action can be executed without having to �rst determine

what state the element is currently in, thus eliminating a potential race condition.

4.2.1 Frame Transmission

Frames are transmitted by enqueueing them onto the Tx queue, which is later polled by

the kernel frame multiplexer. When the multiplexer determines that a new frame has been

enqueued it creates a shadow frame header by copying the user-level frame header into

kernel memory inaccessible to the user-space application. This step is required to prevent

modi�cation of the frame header �elds once the frame is passed to the device, it is not

required when the client is trusted e.g., a host operating system or internal client such as

the ICMP service.

After creating the shadow frame header and attaching the data bu�ers the frame is

passed to the service blocks associated with the frameset. These can perform various

manipulations upon the frame but at a minimum create the appropriate headers for trans-

mission of the frame e.g., TCP, IP, and link-level. To prevent modi�cation of packet headers

by the application program these headers are created in kernel memory, optionally using

51

206

parameters passed in the frame headers, for example the TCP sequence number. Piglet

uses gather DMA when transferring the packet to the NIC to avoid having to copy the

packet headers and payload into a contiguous physical memory bu�er.

Service blocks also perform the task of packet scheduling. Such blocks attach a transmit

timestamp to each frame which is then used by the frame multiplexer to select one frame

per NIC from the set of framesets associated with that NIC. This frame is �nally passed

to the NIC's device driver which creates the NIC-speci�c descriptors used to construct the

packet, then initiates DMA of the packet from application memory to the device.

4.2.2 Frame Reception

A network packet received by a device is processed in essentially the same manner. Piglet's

main function frequently calls the device driver's poll function to process received frames;

if the driver determines that DMA of a received packet has completed then it passes the

packet to the packet �lter for demultiplexing.

Many existing implementations of packet �lters exist, from the original, simple Berkeley

Packet Filter [48] to the advanced Dynamic Packet Filter [22], all of which could be

incorporated into Piglet, but for practical reasons the Piglet prototype instead uses a very

simple scheme. The �lter �rst checks the link-level header to determine the packet type|

ARP is handled by the ARP service handler, IP is passed to the next step, all other types

are processed using the default handler as described later. For IP packets the destination

IP address is �rst checked: if it is not the correct address for this interface the packet

is passed to a forwarding service, otherwise various �elds are extracted from the IP and

higher-level protocol headers, then their values used to lookup the packet handler function

in a tree structure. Values are used in the following order, most signi�cant �rst:

1. IP protocol

2. Destination port (if applicable)

3. Source port (if applicable)

4. Source IP address

52

207

The IP protocol serves to di�erentiate packets by higher-level protocol, and for the

common transport protocols|TCP and UDP|the destination port is the next best dif-

ferentiator. For TCP connections initiated by this system, when the source port number is

usually unspeci�ed and thus randomly generated, this �eld alone normally suÆces for un-

ambiguous demultiplexing, although obviously the other �elds must be checked for equality.

For connections initiated by the remote host the destination port is usually a well-known

value e.g., port 80 for HTTP servers, so packets from many sources will be addressed to a

single destination port. In such cases the source port is a better di�erentiator than source

address, since even for di�erent remote hosts the normal random selection of source ports

means that it is unlikely two remote senders will use the same source port number. If this

should happen then the source IP address can be used to separate packets to the correct

frameset.

If a packet matches in the �lter then a tuple of service Rx handler and frameset is

returned|the latter piece of data is supplied as an argument, along with the packet header,

to the indicated Rx handler. If a packet did not match in the �lter, or the Rx handler

returns a special value to indicate that it cannot process the packet, a default action is

performed, usually to drop the packet but in the hybrid environment the host communi-

cations module registers a default handler which passes the packet to the host operating

system.

The action performed by the Rx handler function is service-speci�c but usually results

in a frame being enqueued on a frameset. For user-level framesets this entails �nding a

header which is not already being used, using the state protocol described above, then

initialising the header and modifying the application's corresponding virtual memory page

to map the physical memory page containing the packet. Finally a signal is sent to the

client if necessary, the form of which depends upon the client e.g., a virtual device interrupt

for the Linux kernel, a reschedule or fast wakeup interrupt for applications.

It is worth acknowledging at this point that page remapping in this manner is not

entirely satisfactory: in order to prevent one application from having access to another's

data through page mappings it is necessary to ensure that only one packet gets received

into each physical page, thus causing ineÆcient use of receive bu�ers, particularly for

53

208

link link

nextnext next

GET_MEM GET_MEM GET_FSET SIGNAL_RX

new_cap

n=16 ref

flags=0

alert_bit=3n=16

new_cap

ref

new_cap ref

next

link

speculate speculate speculate | signal

Figure 4.5: Frameset creation: an example of chained posted service requests

small packets. There are several solutions to this problem: one possibility, investigated

by Geo� Milord [54], uses the x86 segmentation hardware to provide arbitrary-granularity

protection boundaries on received bu�ers; another option is to use network devices which

are capable of directly demultiplexing packets to the correct application e.g. Pratt's Arsenic

device [73].

4.2.3 Frameset Creation

The �nal aspect of the network subsystem worth considering in detail is the means by

which applications create framesets. While not particularly interesting from a networking

perspective it provides a good example of how speculation and reference arguments are

used by an application to combine multiple posted service requests into a single logical

unit. Figure 4.5 shows the chain of PSRs used in this example.

An application wishing to create a frameset �rst must acquire memory capabilities for

both the Tx and Rx bu�er pages. Each of these can be acquired from the kernel using

a GET MEM posted service request, specifying the number of pages to allocate to the

memory capability. Since this is a new capability being created the capability reference

passed is new cap, a placeholder for the returned capability. If the �rst allocation fails there

is no point attempting the second, so the second request is marked as being speculative

54

209

and linked to the �rst.

The application then posts the GET FSET PSR, which requires the capability refer-

ences for each of the bu�ers be passed as arguments, along with an integer value indicating

creation ags e.g., whether the frameset should be shared or private. To permit the appli-

cation to post this request without waiting for the prior requests to complete, the memory

capability references are passed as reference arguments pointing to the new capability to

be returned by the earlier request. This request is also marked speculative and linked to

the second memory allocation.

Finally, an application which anticipates blocking on packet reception can request that

Piglet send a signal when a new packet is enqueued on the frameset's receive queue. This

request requires a frameset capability reference, which must also be passed as a reference

argument since the frameset is not yet allocated, and an integer indicating which alert bit

(analogous to a UNIX signal number) should be marked when the signal is sent. This

request is contingent upon frameset creation so it is marked speculative and linked, and,

because it is the last in a group, the signal bit is set, notifying Piglet to send the system

call complete signal when this PSR has been processed.

Chaining PSRs together in this way permits an application to issue a logically related

series of requests in one group, without waiting for the result of each in turn. Such a feature

is critical in minimising the amount of time the application spends waiting for PSRs to be

processed.

55

210

Chapter 5

Evaluating Piglet

The prototype implementation of Piglet serves two purposes: it provides a vehicle for test-

ing the feasibility of design features, and acts as a means of evaluating the performance

of a Piglet system on typical operating system functions. Much of the previous chapter

demonstrated the usefulness of the prototype in system design, this chapter and the fol-

lowing one describe various experiments used to characterise the behaviour of the Piglet

prototype, referred to subsequently as Piglet.

There are obviously an extremely large number of performance characterisations which

could be performed, but this thesis only addresses a number of key metrics:

� The overhead of service invocation how much overhead is introduced by the kernel's

mechanisms for system service invocation.

� Throughput and concurrency of data transfer how well the kernel supports eÆcient

transfer of data from multiple independent applications to shared physical devices.

� Characterisation of the polling function measuring the response and processing times

of the main polling function.

� Evaluating application-level performance how the system as a whole performs as an

application platform.

This set of performance measurements can be divided into two groups: microbench-

marks and macrobenchmarks. Microbenchmarks, such as McVoy's lmbench suite [49],

56

211

evaluate aspects of the target system in isolation, while macrobenchmarks measure system

performance on a coarse-grained scale, typically by running `real' applications e.g., the

SPEC group's CPU2000 [31] set of benchmarks. The �rst three experiments in the list

above fall into the microbenchmark category and are described in this chapter; application-

level performance is discussed in Chapter 6.

5.1 The Overhead of Service Invocation

A fundamental property of a network appliance is the predominance of data transfer opera-

tions over computation, as stated in Section 1.2. In any operating system which one might

consider as a basis for a network appliance, whether monolithic, vertically-structured, or

some other architecture such as Piglet, applications must ultimately invoke system ser-

vices to transfer data to and from I/O devices. These system services may be high-level

system calls in a UNIX-like system, or lower-level primitives in a vertically-structured sys-

tem, but a system service invocation must be performed in either case. Thus the perfor-

mance of the service invocation mechanism can have a signi�cant impact upon application

performance|as shown earlier (see Section 2.7) the intrusion factor for a network transmit

system call in Linux is 1:30 i.e., an overhead of 30% on such operations.

Two di�erent comparisons were made between the Piglet network subsystem and the

equivalent Linux kernel protocol stack. A coarse-grained measurement of operation la-

tency was obtained using the standard ping application to measure round-trip latency. A

more detailed analysis of the overheads of packet transmit and receive was performed by

instrumenting both protocol stacks with pro�ling hooks.

5.1.1 Measurement of Round-Trip Latency

In order to compare the overhead of the Piglet service invocation mechanism|Posted Ser-

vice Requests|with that of a conventional system a simple network latency measurement

was used. A Piglet protocol stack equivalent to UNIX `raw' sockets was created as a

user-space library and linked with the standard ping application. ping was chosen be-

cause of its simplicity, allowing the impact of system-calls to be easily isolated. Several

57

212

ping muffin2 -f -c 100000 -s 64 --use-tsc 200 --histogram >/dev/null

where: muffin2 name of target machine
-f ood-ping mode
-c 100000 send 100000 packets
-s 64 add payload of 64 bytes
--use-tsc 200 use timestamp counter for timing, 200 cycles per �s
--histogram generate a histogram of timing frequencies
>/dev/null redirect output to /dev/null

Figure 5.1: Command used to measure round-trip latencies.

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600

Round-Trip Time/us

Frequency

piglet-64 piglet-1024

piglet-256

linux-64

linux-256

linux-1024

Figure 5.2: Distribution of round-trip times as a function of payload size

modi�cations were made to the program:

� Support for the Piglet user-space network interface was added. This entailed replac-

ing socket calls with the equivalent calls to the Piglet user-space library.

� The CPU's timestamp counter was used for measuring round-trip time (RTT) since

this can be read directly from user-space, while gettimeofday() requires a system-call

invocation.

� A pro�ling option was added to log the value of the timestamp counter at various

points in execution.

� A option to generate a histogram of RTT distribution was added.

58

213

Modal RTT/�s
Payload/bytes Linux Piglet

64 199 161
256 253 215
1024 468 413

Table 5.1: Mean round-trip times

ping was invoked as shown in Figure 5.1, with the addition of the --piglet parameter

when running the Piglet tests. Three di�erent payload sizes were used, and the experiment

was repeated several times to ensure that results were representative. The histograms

generated are shown in Figure 5.2, with the label piglet-n attached to the histogram for

Piglet with n payload bytes, and similarly for linux-n.

The histograms show the observed frequency against RTT for the given payload size.

The position and shape of the histograms are more signi�cant than the frequency values

themselves. Modal RTTs i.e., the position of the most-frequently observed RTT (highest

column in the histogram) are shown in Table 5.1 as an aid to comparison, with the leftmost

histograms having smallest RTTs. Taller, narrower histograms indicate smaller variance

in the distribution of round-trip times.

The most signi�cant point to take from Figure 5.2 is that the round-trip times for the

Piglet system are lower than those for the Linux system by approximately 38�s for 64-

byte payloads, and up to 55�s for 1024-byte payloads. This dependence upon payload size

arises because the Piglet user-space protocol stack performs DMA of the packet payload

(not headers) directly from application memory while Linux copies into a kernel bu�er from

which DMA is performed; the cost of copying is negligible for 64-byte payloads however so

38� can be taken as a representative �gure.

The only di�erence between the Piglet and Linux tests is which protocol stack is used;

in both cases the application runs as a Linux process, using the default scheduling and

other kernel features. Thus it seems reasonable to infer that the di�erence in measured

round-trip time is entirely due to di�erences in how network services are provided by

the kernel. In order to further analyse this 38�s di�erence it is necessary to use a more

59

214

sophisticated experiment.

5.1.2 Analysis of System-Call Overheads

In order to perform a more detailed analysis event logs were generated by pro�ling hooks

embedded in the Piglet network subsystem and added to the Linux kernel protocol stack.

These hooks record the value of the CPU's timestamp counter upon entry to and exit from

every function used in the transmission and reception of network packets. Timestamp

values are stored in memory so as not to impact application behaviour with the overhead of

writing to an external log, and can be retrieved using special functions later. Representative

sections of the pro�le for a single round-trip were extracted and are displayed graphically

in Figures 5.3 and 5.4 respectively for Linux and Piglet.

The graphical representation shows the relative value of the cycle counter corresponding

to various events in the sending and reception of a single packet. The counter value when

the top-level function used to send the ICMP echo packet is called is used as the zero point;

the got packet event indicates when the reply packet was received by the application.

The vertical line down the centre of each �gure represent the time axis, with time

progressing downwards. The unshaded boxes to the right of the axis represent functions

executed in the application, while the shaded boxes to the left represent kernel functions.

Stacked boxes represent nested function calls. Each dotted line indicates that the event

with the given label occurred at the speci�ed time. For the Linux trace certain labels have

been omitted which are not relevant to the analysis; the complete Linux trace is given in

Appendix A.

The Piglet trace represents the execution of the kernel processor on the leftmost line.

Since the Piglet trace is more concise every event is represented in Figure 5.4.

What is most obvious from these traces is the di�erence in the time taken by the

application to send a packet i.e., from begin send to end send. While Linux takes �6300

cycles, Piglet only requires 230. This major di�erence is due to the application in Piglet

only having to post the frame to the transmit queue rather than executing the system call

itself.

60

215

Enetif_rx
Lnetif_rx

Lsys_recvfrom

Esys_recvfrom
end_select

Lip_rcv/Lnet_bh

Enet_bh
Eip_rcv

Lvortex_interrupt

got_packet

Evortex_interrupt

begin_select

Lvortex_interrupt

Evortex_interrupt

end_send
Lsys_sendto

Lboomerang_tx

Eboomerang_tx

Esys_sendto

begin_send

11679

9753

7821
7155

6570

5466

2278

1543

41134

40473

37848
36942

34228/34313

32071
31411

30178

27379

23251

4000

8000

12000

24000

28000

36000

32000

29268
29450

Kernel Application0

Figure 5.3: Linux ping trace

25319

23603 Eboomerang_rx

Lboomerang_rx

3453
3048
2751

2462
1888
1828
1655

Application0

24000

36000

KernelLDK

Lboomerang_tx
Eboomerang_tx

begin_select

begin_send
Euser_tx_poll
end_send
Luser_tx_poll

32000

28000

end_select

got_packet

34616

35313

4000

Figure 5.4: Piglet ping trace

61

216

The latency between begin send and the packet having been passed to the network in-

terface (Lboomerang tx) is also much lower in Piglet|1400 cycles as opposed to 5000. The

extra 3600 cycles incurred in the Linux kernel corresponds to an additional contribution

of 18�s (with a 200MHz CPU clock) to the round-trip time.

As seen from the traces, the biggest factor in this di�erence is the structure of Linux's

protocol stack. Because Linux implements a reasonably high-level interface (BSD sock-

ets) it executes multiple levels of functions (sys sendto|the generic socket layer; inet -

sendmsg|the Internet domain socket family; raw sendto|the Internet domain raw socket;

ip build xmit|build IP headers for the packet) before �nally passing the packet to the net-

work interface. The substantial overhead of these multiple layers of abstraction contributes

the largest amount to the system call cost in Linux, and provides a signi�cant motivation,

and supporting evidence, for vertically-structured operating systems.

While not a�ecting the round-trip time, the traces also provide an example of mecha-

nism intrusion due to device interrupts. In Linux the �rst vortex interrupt event is caused

by the NIC raising an interrupt to inform the OS that the packet has been sent; in Piglet

the application does not su�er this intrusion because the kernel polls the NIC to determine

when packet transmission is complete.

After sending the packet, the ping application calls select() to block until the reply

is received. Since the time when the kernel enters the corresponding top-level function is

not recorded, it has been estimated using the measurements from Section 2.7. Noti�cation

that the packet has been received and transferred into memory by the network interface

occurs in the second vortex interrupt event for Linux, and the boomerang rx event for

Piglet. The time between that event and select() returning to the application is greater in

Piglet because the kernel must send a reschedule interrupt to the Linux kernel to indicate

that a packet was received.

The select() call could be removed in both the Linux and Piglet tests. For Linux it

is unnecessary since the recvfrom() function blocks if no packet is available; if the call

to select() is removed then the Linux RTT decreases by �20�s. In the Piglet environ-

ment it should be replaced with operations that use the Piglet exception and scheduling

mechanisms, doing so leads to a similar reduction in RTT.

62

217

dual 400MHz
Pentium II

quad 166MHz
Pentium dual 200MHz

Pentium Pro

100Mb/s 100Mb/s

moocow horsemen logos

Figure 5.5: Testbed con�guration used for bandwidth measurement

Finally, upon returning from select() the application receives the packet; in Linux

this entails making a recvfrom() system call, while in Piglet the application removes a

frame header from the frameset's receive queue. The time di�erence here (end select to

got packet, 21:0�s vs. 3:5�s|a di�erence of 17:5�s) again demonstrates the costs of system

call overhead and multiple levels of abstraction.

This analysis demonstrates two key points. Firstly, the overhead of a system call,

1500 cycles, is signi�cant|approximately 25% of the total cycles executed for sendto().

Secondly, implementing high-level, general-purpose interfaces in the operating system leads

to ineÆciency|the central argument used by proponents of vertical operating systems.

5.2 Concurrent Data Throughput

Two metrics are of prime importance when evaluating the suitability of an operating system

for a network appliance|data transfer latency and peak transfer throughput. A partic-

ular concern for multiprocessor systems is how e�ectively the operating system supports

concurrent, independent data transfers. In order to evaluate how e�ectively the Piglet ar-

chitecture can support high-throughput data transfers we conducted a simple measurement

of network transfer throughput as follows:

� A quad-processor 166MHz Pentium machine (horsemen) running the Piglet kernel

was connected to both a dual-CPU 200MHz Pentium Pro (logos) and a dual-CPU

400MHz Pentium II (moocow), over 100Mb/s Fast Ethernet links (see Figure 5.5).

� The ttcp benchmark program was used to measure the mean aggregate bandwidth

63

218

0

20

40

60

80

100

120

0 1 2 3 4 5

Concurrent connections

M
ea

n
ag

gr
eg

at
e

th
ro

ug
hp

ut
 (M

b/
s)

Piglet

Linux 2.0.36

Linux 2.2.14

FreeBSD 4.2

Figure 5.6: Mean aggregate throughput for n concurrent TCP connections

achievable by multiple concurrent TCP connections sending data from horsemen

to both moocow and logos. The same, default parameters were used in all test

con�gurations.

� Even-numbered connections were from horsemen to moocow, odd-numbered from

horsemen to logos e.g., with 3 connections two are made to moocow, one to logos.

For the purposes of this experiment the Piglet user-space library was extended with

a TCP protocol stack. While one bene�t of the Piglet API is that it enables single-

copy network operations, this feature was not used in this experiment; doing so would

have required restructuring ttcp, and also would introduce an extra variable into the

experimental setup, thus making it harder to isolate the cause of observed e�ects.

The mean (over 3 trials) aggregate throughput measured is plotted in Figure 5.6. For

purposes of comparison the same measurements were also taken using various alternative

operating systems on horsemen: two versions of the Linux kernel, 2.0.36 and 2.2.14, and

FreeBSD 4.2. Both moocow and logos were running Linux kernel version 2.2.14. Unfortu-

nately, other operating systems which one might wish to compare Piglet with could not be

64

219

evaluated due to either lack of SMP support (NetBSD, OpenBSD, Nemesis, Exokernel) or

the failure of the software to install itself correctly on the test machine (Solaris).

5.2.1 Application Throughput Analysis

What we see from the graph is that Piglet makes better use of multiple processors than

either version of Linux or FreeBSD. While all three systems are able to support approxi-

mately the same bandwidth, 60Mb=s, over a single connection, Piglet can support approx-

imately 105Mb=s with multiple connections while Linux 2.0.36 and 2.2.14 are restricted

to 85Mb=s and 55Mb=s respectively. FreeBSD appeared to have a bug in the network

protocol stack which rendered it unable to complete the test for more than two concurrent

connections|when the �rst connection to a given machine terminated the other connec-

tion was aborted due to an `I/O error'. However, the results for two connections suggest

that its performance would be, at best, on a par with Linux.

An obvious concern for the other three systems tested is the lack of scalability beyond

two concurrent connections. Let us address each system in turn.

1. Linux 2.0.36 performed as expected. Two or more concurrent connections achieved

higher aggregate throughput simply by exploiting idle time present when only a single

connection is used. However, the use of a single global kernel lock prevents e�ective

use of multiple processors on I/O bound tasks since only one process can enter the

kernel at any time.

2. Linux 2.2.14 surprised us with its very poor performance. One of the claimed advan-

tages of the Linux 2.2 kernels over the 2.0 series is better utilisation of multiprocessors

through �ner-grained kernel concurrency control. However, our results clearly show

that this is not true for I/O bound tasks. While we suspect that the `new and im-

proved' concurrency control is still the biggest problem, another factor is the more

complex TCP/IP implementation, since we still observed 100% CPU utilisation even

though the observed throughput was lower, even after disabling some of the advanced

features supported by the protocol stack (speci�cally the use of the TCP timestamp

option).

65

220

3. Piglet scales very well from one to two connections, mainly due to the TCP/IP stack

being implemented in user-space, without a global lock, thus preventing serialisation

which occurs in Linux. The performance for 3 connections was expected to be higher,

but measurements taken for the next section show that the Piglet kernel is fully

utilised for two concurrent connections using di�erent network devices, so is unable

to provide service to additional clients. There may also be some contention for the

Linux global kernel lock since the clients are still scheduled and blocked by Linux.

Two positive results emerge from this experiment: the Piglet user-space protocol stack,

unoptimised and without utilising the Piglet single-copy API, performs comparably|

slightly better actually|to the Linux kernel protocol stack, and having per-client instances

of the network subsystem in user-space, thus obviating the need for global concurrency con-

trol, provides the desired scalability. In order to better understand the polling behaviour

of the Piglet kernel, however, it is necessary to investigate various characteristics of the

main function.

Before doing so it is important to summarise how di�erent design decisions incorporated

in Piglet provide performance bene�ts. The ping latency measurements show the e�ect of

replacing the Linux kernel protocol stack with the Piglet user-space protocol stack. This

combines two factors: elimination of the system call overhead and removal of the multiple

layers of abstraction present in the socket interface. Consider only packet transmission:

the subsequent trace-based analysis shows that of the 3600 cycle (18�s) di�erence approx-

imately 1400 cycles of latency (begin send{Esys sendto + Lsys sendto{end send) are

imposed by the system call mechanism.

The ttcp experiment demonstrates a signi�cant bene�t of moving the protocol stack

to user-space, namely the improved scalability due to not having inter-network ow lock

contention on the protocol state. However, neither experiment indicates how much bene�t

is derived from asynchrony or implicit concurrency in the Piglet system|this question is

to be quantitatively addressed in future work. Measurements gathered in the following

section, however, indicate that signi�cant work is performed by the Piglet kernel in order

to transmit packets, thus implying a reasonable degree of concurrency.

66

221

Operation Mean processing time/�s

GET MEM 46.6
GET FSET 24.2

CATCH EVENT 23.3
SET PEER 28.8
FREE RX 3.7

Table 5.2: Mean processing time for various PSRs

5.3 Pro�ling the Polling Function

The biggest question raised by the adoption of the Active Kernel model is whether a polling

model can perform acceptably when compared to conventional `passive' operating system

kernels. In order to address this question several properties of the main function have been

investigated:

� How long the kernel takes to process various di�erent Posted Service Requests.

� What is the overhead of polling shared-memory framesets to check for frames to be

transmitted?

� How long does it take to transmit a frame?

� What overhead is imposed by polling devices rather than using interrupts?

� What fraction of the CPU is utilised by various workloads?

Each of these properties was evaluated using the same experimental con�guration used

in Section 5.2. While far from being an exhaustive list of metrics which can be used to

characterise main this list o�ers useful, representative data.

5.3.1 PSR Processing Time

The prototype Piglet implementation only uses posted service requests to provide a small

number of operations, speci�cally those associated with the creation and manipulation of

framesets. The mean processing time for each of these operations is shown in Table 5.2.

67

222

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

Number of clients

P
ol

lin
g

tim
e/

us

Figure 5.7: Frameset polling time as a function of number of clients

The purpose of each operation is as follows: GET MEM is used to allocate memory blocks

from which a frameset is constructed; GET FSET performs this construction. CATCH EVENT

is subsequently used to request that asynchronous signals be sent upon the occurence of the

`Packet Received' event, and SET PEER associates routing information with the frameset.

Each of these operations can be seen from the table to have a fairly high cost, however the

nature of them as initialisation primitives means that this cost is typically only incurred

once per frameset.

FREE RX, on the other hand, is called by the client for every packet received and en-

queued on the receive queue, the purpose being to indicate to Piglet that the bu�er has

been processed and can be reclaimed for subsequent reuse. The overhead of 3:7�s is suf-

�ciently low that calling this function frequently does not impose undue load upon the

kernel.

5.3.2 Frameset Polling Overhead

In an active kernel it is important that the overhead of polling not be so high as to render

the system performance unacceptable. Two problems can occur if this is not the case: the

68

223

Pending frames Frequency Total Processing Time/�s

0 94.0% 3.3
1 2.8% 32.9
2 0.3% 93.9
3 2.8% 135.0
4 0.1% 128.0

Table 5.3: Total frameset processing time for n pending frames

kernel spends all of its time polling, rather than performing services on behalf of clients;

and the responsiveness of the kernel becomes poor, since the mean delay before a given

object is polled is directly a�ected by the amount of time spent polling.

Figure 5.7 shows the mean time taken by the Piglet kernel to poll n user-space client

framesets when no processing was required for any of the framesets. This represents the

best-case overhead i.e., Piglet must spend at least this much time every polling cycle in

order to examine n framesets. As expected, the polling time is essentially proportional to

the number of framesets|the gradient of the line is approximately 0:6�s per frameset.

5.3.3 Frame Transmission Cost

If one or more polled framesets has pending frames to be transmitted Piglet immediately

passes them to the network device driver. If the cost of this processing is added to the

cost of polling all framesets, measured above, then the resulting total represents the total

amount of time the kernel spends processing user-space transmit queues per main cycle.

This total processing time was measured for a kernel handling four concurrent ttcp

applications all sending to the same host. Every time the kernel polls all four framesets the

number of pending frames can be anywhere from 0 to 4. As shown in Table 5.3 this total

processing time can be fairly signi�cant, especially when more than a single frameset has

a pending frame. Thus Piglet can also be con�gured to only process one pending frame

in each polling operation. However, it is worth noting that 94% of the polling operations

�nd zero frames pending, leading to a mean total processing time which is calculated to

be 8:2�s.

69

224

Device state Frequency Processing Time/�s

Idle 68.6% 3.9
Up-Complete 5.0% 45.0

Down-Complete 18.0% 16.4
Both 8.4% 48.1

Table 5.4: Device event handling time in di�erent states

5.3.4 Device Polling Overhead

Similar consideration must also be given to the behaviour of the kernel when polling pe-

ripheral devices. One of the modules executed by main every cycle is responsible for polling

every network device to determine when the device must be serviced, as would normally

be indicated by an interrupt. In the prototype implementation this module checks three

conditions: if a `downward' (transmit) DMA operation completed, if an `upward' DMA

completed, and whether the statistics registers need to be read. Since the last of these

occurs relatively infrequently only the performance when handling the �rst two conditions

has been measured.

Table 5.4 shows the module's processing time when the device is in each of four states:

idle i.e., neither condition detected, one or the other DMA completed, or both. Similarly to

the frame processing times, the idle processing time is relatively small as expected, but the

other states have signi�cant handling costs. In particular, processing of an Up-Complete

condition involves passing the received packet upwards through every part of the network

subsystem, hence the much higher processing time than the Down-Complete condition,

which just requires that the driver update internal state. The expected handling time

calculated from these results is 11:9�s.

These results were generated using a single instance of ttcp as the kernel client; one

side-e�ect of doing so is that a given condition being detected can indicate multiple in-

stances of the associated event occurring e.g., multiple received packets transferred by

DMA into memory. Unfortunately the number of event instances handled for each mod-

ule cycle was not recorded, so instead the same statistics were gathered using ping as

the client. Since ping only sends a single packet at a time and waits for a reply before

70

225

Application CPU Utilisation Idle Polling Period/�s Throughput/Mb=s

ttcp �1 35% 9.0 64.3
ttcp �2 45% 10.5 65.6
ttcp �3 51% 11.0 68.8

ttcp �2a 91% 15.0 105.0

ping 45% 9.0 N/A

a

2 remote hosts

Table 5.5: CPU utilisation and polling period

sending another, there can be no instances of either both conditions being true or multiple

events within a single condition. In this case the handling times for Up-Complete and

Down-Complete were measured as 33:8�s and 8:0�s respectively.

5.3.5 CPU Utilisation

Finally, various measurements were made of the time consumed by the main polling func-

tion. The two metrics which are most interesting are the degree to which the kernel

processor was utilised i.e., what fraction of the CPU cycles are spent in `useful' work, and

the polling period|the total execution time for one cycle of main. While this obviously

depends on which tasks are performed by the modules called by main, the value which is

perhaps most useful is the idle polling period i.e., the amount of time the kernel requires

to perform a single polling cycle, since this dictates the responsiveness of the kernel to new

events.

The utilisation and polling period were measured using both ttcp and ping, since

each uses di�erent packet sizes|ttcp sends MTU-sized packets, while the default ping

invocation sends very small packets. In practice this results in ping sending packets at a

faster rate than ttcp, thus requiring more processing by the kernel; since the kernel never

touches packet payloads the larger size of the ttcp packets has no impact. The results

from these measurements are shown in Table 5.5.

These results go some way toward explaining why Piglet's aggregate ttcp throughput

does not increase for > 2 processes in the benchmark described in Section 5.2. Although

the CPU utilisation is relatively high for a single connection, it does not increase greatly

for 2 or 3 connections to the same machine, apparently because some other factor is

71

226

constraining the output|hence the data throughput not increasing. On the other hand,

once two connections to distinct remote hosts are created the throughput does increase

in a favourable manner; unfortunately the increase in CPU utilisation is greater than one

might expect.

The �nal observation to be made about the idle polling period is that it is comparable

to the overhead associated with an asynchronous interrupt in Linux, as measured in Sec-

tion 2.7. Thus, at least for small numbers of clients, polling appears to o�er similar event

response times to interrupts|one concern of an active kernel system.

5.3.6 Analysis of Polling Function

The results garnered from these experiments allow several important design decisions to be

evaluated. For each object which is polled by the Piglet kernel there are two criteria with

which to determine whether polling is a viable communication mechanism: the best-case

(idle) polling time and the processing time when an event must be processed. The best-

case polling time must be low enough such that polling this object does not contribute a

considerable amount to the polling period of main, thus increasing the kernel's response

time. Similarly, the processing time for an object must not be so high as to render the

kernel unresponsive while processing events occurring on that object.

Before analysing these results further it is important to note two factors which cast a

more favourable light on them than the raw measurements. Firstly, the prototype Piglet

kernel has not been optimised in any way, but the polling mechanism should be par-

ticularly amenable to certain kinds of optimisation e.g., run-time generation of polling

functions. A similar idea was used in Massalin's Synthesis kernel [47]; see Section 8.4.1

for further discussion on this topic. Secondly, these measurements were obtained using

very old hardware|a quad-166MHz Pentium Hewlett-Packard Netserver ES. It is entirely

reasonable to assume that since CPU clock speeds are now almost an order of magnitude

higher there would be a favourable decrease in measured polling times.

Now consider the results shown above for framesets and devices. The per-frameset

polling time is suÆciently low that polling in conjunction with shared-memory objects

appears to be a reasonable mechanism for communication with applications, if the number

72

227

of framesets which must be polled can be constrained within a relatively small upper-

bound. Various kernel structural changes could be made to do so, these are discussed in

Future Work. The processing time, however, is larger than might be deemed reasonable to

guarantee acceptable response time to other objects e.g., devices. Note that the processing

time itself is only an issue if the kernel does not respond to any other events during this

time, a problem which can be alleviated by dividing the processing function into sub-

functions which are interleaved with polling of high-priority objects.

Device polling, on the other hand, is more problematic to evaluate. The best-case

polling time of 3�s is suÆciently large to contribute a signi�cant amount to the idle polling

period of 9�s for a single frameset. This suggests that polling objects with high best-case

polling times may be too ineÆcient|perhaps interrupts should be used to signal when an

event occurs but all processing should be done in a schedulable region, the approach used

in the Nemesis kernel. Such a design retains much of the simplicity of the interrupt-free

design but eliminates polling for expensive objects.

73

228

Chapter 6

Application-Level Performance:

The Flash Web Server

Although microbenchmarks are important in analysing particular aspects of system per-

formance they paint only a partial picture. In order to gain a better understanding of how

well a particular operating system can support real applications it is necessary to run those

applications on that operating system.

To evaluate the bene�t Piglet provides to applications one must �rst select an appro-

priate application. Since Piglet is targeted at the network appliance application domain it

is important to use a representative application|one whose workload consists primarily of

data transfer operations rather than computation. The example used to evaluate Piglet is

a web server, Vivek Pai's Flash [69] server. Flash was deemed to be most suitable for two

reasons: simplicity and performance. While Apache [1] is the dominant open-source web

server it is reputed to be extremely complex and bloated, so was avoided by the author

for practical reasons. Flash, on the other hand, is relatively simple and boasts excellent

performance.

6.1 Porting Flash to Piglet

There are several ways in which Flash can be evaluated on top of Piglet. At one extreme

of this spectrum is the use of a heavily-modi�ed implementation of Flash, tailored to

74

229

use Piglet's API and Piglet-speci�c features such as asynchronous service invocation and

single-copy network transfers. While o�ering the highest potential performance such a

system is more diÆcult to compare to Flash running on a conventional operating system

since there are many more variables than just the operating system. Thus the opposite

approach was adopted instead|evaluate Flash by providing a wrapper library to translate

conventional operating system calls into Piglet requests, requiring absolutely no changes

be made to Flash itself.

The set of functions used by Flash which must be translated to Piglet service requests

includes all the network-related system calls. Unfortunately the Linux kernel, like all

UNIX-based operating system, uses the same functions for network data transfer as for

other forms of transfer e.g., �le I/O, interprocess communication. Thus the library must

di�erentiate all calls to such functions into the two distinct classes, translating network

functions into Piglet requests but passing all other requests to the kernel. This extra layer

of indirection, while alleviating the need to modify the application, imposes some overhead

on passed-through system calls; the wrapper library is suÆciently simple, however, that

this overhead is not likely to be signi�cant.

Having previously designed and constructed such a user-space TCP library [19] it was

with some trepidation that such a project was undertaken again. However, the focusing

of Piglet toward the network appliance domain greatly simpli�es certain aspects of the

implementation:

1. Predictability of execution: applications for network appliances have a much more

homogeneous structure which can be taken advantage of in the library implementa-

tion.

2. Asynchronous communication: network appliances make heavy use of asynchronous

(non-blocking in the UNIX parlance) I/O operations, which map more readily onto

Piglet functions.

The single biggest problem encountered in the earlier TCP stack implementation was

designing the library to deal with arbitrary applications which may make only sporadic use

75

230

of the library. Many of the periodic functions required for protocol operation and book-

keeping must thus arrange to be executed without the application invoking the library to

do so, instead using, say, an interval timer callback or additional process/thread. This

adds signi�cant complexity in order to maintain data consistency in the face of these

unsynchronised functions.

If the Piglet library is restricted to network appliance applications then the common

structure of server applications can be used to eliminate this complexity. Most servers are

structured around a central event-dispatch function which determines the set of operations

which should be performed at the current time and executes the appropriate functions.

This determination of events to handle is usually accomplished using the select system

call|an application calls select with a set of objects e.g., network connections, it wishes

to perform some operation upon, and select indicates which operations can proceed with-

out the application blocking. This determination of object readiness and processing of

events constitutes the core of most servers; since the application repeatedly calls the same

function this provides a natural point at which the library can perform book-keeping and

other periodic operations. Thus the requirement for complex asynchronous processing is

eliminated.

The second advantage of constructing a TCP library for server applications is the

use of asynchronous rather than synchronous network I/O operations. While general-

purpose applications usually use the more straightforward synchronous system calls, since

the application is noti�ed immediately of the success or failure of the call, servers tend to

use asynchronous operations in order to maximise throughput. This means that they can

be easily mapped onto Piglet's asynchronous API without requiring signi�cant complexity

in the library.

The �nal complication in implementing the user-space TCP stack arose from the nature

of select. Because Flash uses select to check for both network connection events (e.g., a

HTTP request being received or transmit bu�er being drained) and interprocess commu-

nication, such as a signal from a �le cache helper, the library has to be able to handle

both Piglet objects|network connections|and kernel structures in a single call. This is

accomplished by �rst checking the Piglet objects, removing those from the query set, then

76

231

File Size Frequency

file500.html 500 bytes 35%
file5k.html 5kB 50%
file50k.html 50kB 14%
file500k.html 500kB 0.9%
file5m.html 5MB 0.1%

Table 6.1: Distribution of �le sizes for Webstone benchmark

Test Server Server Connections
System CPUs Throughput/Mb=s per second

Piglet 1 71.34 438.2

1 45.5 281.7
Linux 2 43.5 273.6
2.2.16 3 42.8 268.4

4 42.1 262.2

Table 6.2: Flash performance for the Webstone benchmark

calling the Linux select function to obtain the results for the kernel objects. However,

before doing so the `timeout' parameter must be updated to reect the results of querying

the Piglet objects: if any events were already pending then the Linux call must not block.

Once that call returns the results must be merged with those for the Piglet objects, which

may need to be rechecked if none had pending events before the call.

6.2 Evaluating Flash's Performance

Flash was evaluated by running it on the same testbed described in the previous chapter.

The server itself was run on the horsemen quad-CPU machine, running under either Piglet,

Linux-2.2.16, or FreeBSD 4.2, with default parameters and the number of server processes

varying from one up to the maximum number of available application CPUs|3 for Piglet,

4 for Linux and FreeBSD.

Two di�erent programs were used on the client machines to generate requests for the

server: the Webstone 2.5 [55] web benchmark program, and the curl [84] utility for auto-

mated i.e., non-interactive, retrieval of web pages from a server

77

232

Test Server Server
System CPUs Throughput/Mb=s

1 75.0
Piglet 2 93.7

3 98.8

1 50.83
Linux 2 51.14
2.2.16 3 50.86

4 51.38

1 51.30
FreeBSD 2 51.24

4.2 3 32.0
4 24.0

Table 6.3: Flash performance for the curl test

Webstone allows the user to specify a page-size distribution which the clients use to

determine which pages to fetch from the server. The distribution shown in Table 6.1 is

supposedly representative of `real' web traÆc. A coordinating process starts a number of

clients on each client machine (5 per machine in this case) and provides them with the

necessary parameters to drive the server. After a �xed time interval, one minute for this

test, the coordinator queries the clients for various traÆc statistics and produces overall

server performance numbers. These results are shown in Table 6.2.

Unfortunately the prototype Piglet implementation was not stable enough to support

Flash running with more than a single server process when driven by Webstone. In order

to provide a comparison with Linux curl was used to generate upper-bounds for server

performance by repeatedly downloading the largest �le in the distribution (5Mb) and

measuring the average throughput. These measurements are shown in Table 6.3; these

numbers are essentially the same as those obtained using the ttcp benchmark earlier.

These throughput �gures were used to calculate projected values for the Webstone

benchmark on Piglet by multiplying the curl throughput for 2 or 3 server CPUs by the

ratio between the Webstone and curl throughput for a single CPU|95%. Both sets of

throughput measurements are displayed in Figure 6.1.

Similarly, when FreeBSD was used as the test platform for the WebStone test all web

78

233

(projected)
(projected)

0

20

40

60

80

100

120

0 1 2 3 4 5

T
hr

ou
gh

pu
t/M

b/
s

Piglet (curl)

Piglet
(WebStone)

Linux 2.2.16
(curl)

Linux 2.2.16
(WebStone)

FreeBSD 4.2
(curl)

Figure 6.1: Flash performance for n server processes

connections would cease transmitting after a few seconds, regardless of the number of server

processes. Fortunately it proved possible to at least complete the curl measurements on

this platform. However, the results show unexpectedly poor performance for more than two

server processes; one might surmise that perhaps FreeBSD is optimised for the common

case of dual-processor SMP systems in a way which penalises systems with a higher degree

of multiprocessing.

What we see from this graph is that Piglet and Linux both exhibit the same scalability

behaviour as was observed with ttcp. Piglet shows some throughput increase from 1 to 2

CPUs, but beyond that the kernel CPU is over-utilised and thus restricts the maximum

throughput achievable. Linux is again disappointing, showing zero or negative dependence

upon the number of server processors.

79

234

Chapter 7

Related Work

There has been a signi�cant amount of previous operating systems research which has

relevance for Piglet. Both the problem of intrusion and new system architectures to address

that problem have long been major directions in systems research. More recently, there

have been a number of projects in addition to Piglet which are targeted speci�cally at

network appliances.

7.1 Intrusion

While the generalised concept of operating system intrusion is one of the contributions of

this work, both policy and mechanism intrusion have been investigated to some degree by

previous researchers. The problem of policy intrusion has been known of at least since

the early '80s, and speci�c examples of mechanism intrusion have been studied by various

groups. In response, a number of operating system projects which attempt to reduce policy

intrusion, and to a lesser extent mechanism intrusion, have been designed and implemented.

Perhaps the clearest demonstration of the signi�cant negative impact which inappro-

priate operating system structures can have on application performance was provided

by Stonebraker's discussion [85] of how the services provided by a general-purpose OS

(UNIX) are unsatisfactory for supporting a high-performance database management sys-

tem (DBMS). He comes to the conclusion that \A DBMS would prefer a small eÆcient

operating system with only desired services... On the other hand, most general-purpose

80

235

operating systems o�er all things to all people at much higher overhead."

While Stonebraker implies that the needs of any given application can be most ef-

�ciently met by a special-purpose operating system, a general-purpose OS which o�ers

low degrees of both policy and mechanism intrusion may also be able to do so. Hence

the need for alternative operating system architectures, speci�cally those which facilitate

application-speci�c resource management with low overhead.

7.1.1 Policy Intrusion

Stonebraker's analysis of the limitations imposed by a general-purpose operating system

upon a database management system provides many examples of policy intrusion: inap-

propriate bu�er replacement policies in the �le system bu�ers, ineÆcient physical layout

of data upon disks, high overhead of general-purpose scheduling and process management.

Common to every example is the problem of the abstractions implemented by the OS being

restricted to policies which interact adversely with those used by the DBMS. Hence, the

need to separate resource management mechanisms and policies is clearly demonstrated

for many di�erent classes of resource.

Application-speci�c management of virtual memory has been extensively researched:

Appel and Li [2] provide general considerations for implementing application-level VM

primitives; Harty and Cheriton [30] discuss an implementation of application-controlled

physical memory in the V++ system and its bene�ts in a transaction processing applica-

tion; and �nally, Hand [28] and Engler [21] describe speci�c implementations for vertically-

structured operating systems. Hand discusses how self-paging is used in the Nemesis OS to

support virtual memory without compromising the QoS guarantees of other applications,

while Engler describes how the low-level primitives exported by the Aegis exokernel can

be used to eÆciently support various application-level functions.

User-level network protocols are another area which has been covered by many groups:

Cornell's U-Net [90], and the Virtual Interface Architecture [13] derived from it, provide

applications with a direct interface to the network adapter; Thekkath et al. [87], and

Edwards and Muir [19] describe user-level implementations of network protocols. The

81

236

exibility to implement application-speci�c network protocols and/or management of net-

work resources has become much more important for both multiservice operating systems

and high-performance network appliances.

7.1.2 Mechanism Intrusion

While the need for application-speci�c resource management appears to have been univer-

sally adopted, the reduction of mechanism intrusion is often taken to be unimportant. For

example, Engler et al. describe in [21] how Aegis, the �rst implementation of their exoker-

nel architecture, was heavily optimised to reduce the costs of invoking low-level primitives.

Subsequently, Kaashoek et al. reported in [39] that such optimisations are not necessary to

leverage the most bene�t from the exokernel architecture. While this statement is accepted

as generally true, in certain classes of application e.g., where I/O comprises the bulk of the

workload, it appears that there is considerable bene�t to be had from reducing mechanism

intrusion.

Mogul and Ramakrishnan [59] describe how a conventional operating system can be-

come `livelocked' due to continuously being interrupted by a network interface card. While

the solution they propose, temporarily disabling interrupts and switching to a polling mech-

anism, is very similar to the Piglet architecture it di�ers signi�cantly in that their kernel

switches dynamically between the two schemes while Piglet always uses polling. Smith

and Traw [82] introduced clocked interrupts as an alternative combination of interrupts

and polling. They propose having a periodic timer interrupt which polls devices, e�ec-

tively `clocking' interrupts into the system at a controlled rate. In light of the analysis of

the polling function presented earlier such hybrid schemes deserve further investigation.

Dougan et al. [18] discuss possible modi�cations to the Linux kernel in order to reduce

the impact of the OS on cache performance. In particular, they recommend bypassing the

cache in certain portions of the kernel e.g., when zeroing memory pages in the idle task,

so as not to pollute the cache.

One of the most prominent examples of mechanism intrusion is the high cost of inter-

process communication in the early microkernel architectures, as described below. Subse-

quently, several OS projects made signi�cant e�orts to reduce this cost e.g., the L3 and

82

237

L4 microkernels [29, 43], the Spring microkernel [26]. These systems are described in more

detail below.

7.1.3 Multiprocessor Intrusion

The cost of synchronisation in a multiprocessor system was noted earlier as being an

instance of mechanism intrusion speci�c to such architectures. Of particular relevance to

Piglet are a number of projects in the early 90's which examined software architectures for

applying multiple processors to network protocol processing.

Bj�orkman and Gunningberg [7] modi�ed the x-kernel [34] to run on a 26-processor

Sequent Symmetry as a platform for investigating di�erent parallel implementations of

TCP and UDP stacks. Their method, having each packet processed by a di�erent processor,

demonstrated good speedups: proportional to the number of processors for UDP, but much

less for TCP.

Nahum et al. [65] performed a very similar experiment, also using the x -kernel as their

basis for a processor-per-packet parallel implementation of various protocols. They too

found that simple protocols scale well with number of processors but in more complex

ones the locking required by shared state severely hampers concurrency. One particularly

interesting result presented by Nahum's group is the observation that complex locking

schemes, with multiple locks for di�erent components of the protocol stack, resulted in

lower overall performance than a simple model with a single lock for the whole stack.

Of direct relevance to Piglet is the conclusion of both groups that contention for shared

resources is the primary limiting factor for simple protocols such as UDP, but synchro-

nisation dominates for more complex protocols. This suggests that an approach which

minimises the amount of state shared between network ows, such as the user-space pro-

tocol implementations in Piglet, is an important step in maximising the bene�t of multiple

processors. This conclusion is echoed by Nahum et al., who state that intra-ow paral-

lelism is severely limited by the locking which is required, while inter-ow parallelism is

reasonably scalable.

An alternative use of multiple processing elements in a network protocol stack is to

implement some or all of the stack functionality on the network interface itself. Cooper et

83

238

al. designed the Nectar communication processor [14] in such a manner as the host inter-

face for systems connected to the Nectar network. Each communications accelerator board

(CAB) contains a CPU and local memory which are used to run a specialised operating

system; the relationship between the CAB operating system and host is similar to that

between Piglet and Linux in the hybrid prototype. The most interesting result from this

project is the increase in throughput when the TCP stack was moved from the host oper-

ating system onto the CAB, approximately a factor of 3. However, since the authors do

not describe the implementation details of this experiment it is diÆcult to deduce whether

such a relocation of functionality would be pro�table in Piglet.

7.2 Alternative Operating System Architectures

Many di�erent system architectures have been designed to reduce both policy and mech-

anism intrusion. The microkernel architecture was perhaps the �rst to be designed with

application-speci�c resource management as a primary goal. The high cost of inter-process

communication (IPC) in such systems led to three di�erent subsequent directions in oper-

ating systems research:

� Fast IPC -based microkernels, which retained the same architecture but attempted

to reduce the cost of IPC.

� Vertically-structured operating systems, which eliminated that cost by moving func-

tionality from servers into applications themselves.

� Extensible kernels, which permitted application-speci�c code to be added as exten-

sions to the kernel.

Note that these directions are in fact orthogonal, and thus it is possible for an operating

system to incorporate ideas from more than one, leading to a 3-dimensional design/feature

space.

84

239

7.2.1 Microkernels

Early examples of the microkernel architecture include the Bell Labs Multi-Environment

Real-Time (MERT) system [45] and the Series/1 Distributed System (SODS) [81, 27].

MERT was intended to support multiple system environments on a single physical ma-

chine (much like IBM's VM/370 system [16]), speci�cally the combination of time-sharing

(UNIX) and real-time operating systems. SODS/OS was designed as the building block

for a distributed computing environment in which processes were designed to be location-

independent, thus permitting transparent migration. Neither MERT nor SODS/OS was

designed with eÆcient resource management as a primary goal.

Both MERT and SODS/OS conform closely to the characteristics of a microkernel

architecture, namely provision of system functions by server processes, and the use of

messages as the primary IPC mechanism. Like subsequent microkernel projects they both

su�ered from a high cost of communication; Lycklama [45] states that \the MERT system

requires from 5 to 50 percent more system time for the more heavily used system calls",

while Hammond [27] observes that \the associated context swapping is extremely expensive

on a conventional machine".

Mach [77, 76] perhaps typi�es the microkernel architecture. The kernel itself imple-

ments only a core set of services necessary to support application-level servers, which in

turn provide the system services required by applications. A powerful message-passing

mechanism provides the primary IPC mechanism; in practice the high degree of mecha-

nism intrusion this introduced meant that the performance of applications running on top

of server-based operating systems e.g., the 4.3BSD server, was typically much lower than

the native environment.

The poor performance of Mach, primarily due to this high cost of IPC, prompted several

research groups to address the problem of reducing this cost. Liedtke's L3 [43] and L4 [29]

microkernels left the fundamental architecture unchanged but used the minimisation of

IPC cost as the overriding priority in the system design; Liedtke [43] reports IPC times

more than an order of magnitude faster than Mach. Even so, lmbench [49] results presented

by Hartig [29] show that Linux running natively is still faster than the Linux server running

on L4.

85

240

Sun's Spring microkernel introduced the concept of `doors' as a mechanism by which

applications can perform control transfers between protection domains. A door is concep-

tually similar to a system call entry point in a conventional OS, in that it de�nes a �xed

access point by which an untrusted client may invoke a speci�ed function. However, doors

are de�ned by applications and passed as capabilities to clients, thus permitting those

clients to perform fast transfers of control to the server.

Both Amoeba [86] and EROS [80] used capabilities to control access to system objects.

In both systems these capabilities are used as the primary service invocation mechanism|

an application invokes a particular operation on a capability, which is either implemented

directly by the kernel or passed to a server process using IPC. Clients need not be aware

of this distinction, thus providing a degree of exibility in system structure. Amoeba

and EROS di�er primarily in their target application domain: Amoeba was designed as a

platform for distributed computing while EROS is intended to combine the exibility of a

general-purpose operating system with the security provided by capabilities.

The University of Massachusetts' Spring real-time microkernel [67] (not related to the

aforementioned project of the same name) is perhaps most similar to Piglet in that each

node in the Spring distributed system dedicates one of four CPUs to handling system tasks.

The functionality of this processor is not described in the available documentation, other

than to state that it is used to handle administrative tasks and shield applications from

device interrupts. This is primarily done to reduce unpredictability in the system, thus

assisting the scheduling of jobs with hard real-time requirements.

While Piglet appears to share a fundamental message-based programming model with

many microkernel systems this similarity is only skin-deep. Message-based microkernels

in fact implement message processing as synchronous IPC, thus translating the message-

based interface into a conventional function call model. In particular, `messages' are not

bu�ered|instead the kernel blocks the `sender' until the `receiver' is willing to accept the

message. Piglet, on the other hand, not only exports a message-based API but implements

it using `real' messages, resulting in true asynchronous communication.

86

241

7.2.2 Vertically-Structured Operating Systems

While fast IPC mechanisms have helped lessen the biggest problem with the microkernel

architecture, namely the high overhead of communicating with servers, others still exist

e.g., QoS crosstalk. Hence the development of the vertically-structured operating system

as an alternative which does not share the same architectural limitations. The University

of Cambridge's Nemesis kernel [42] and MIT's Exokernel architecture [21, 39] are probably

the best-known examples of such operating systems, but other groups have also designed

operating systems which loosely �t into the same model e.g., Stanford's Cache kernel [11].

One of the precursors to vertically-structured operating systems which proposed mov-

ing away from the microkernel approach was the Swift system [12]. The Swift architects

advocated for the use of upcalls as the fundamental communication mechanism between

modules|synchronous procedure call rather than asynchronous IPC between tasks, pri-

marily motivated by the overhead of IPC and complexity introduced by asynchrony. The

converse decision was made in the Piglet design|the active kernel provides a much lower

overhead channel than conventional IPC, and the complexity of asynchronous communica-

tion is considered a small price to pay in return for the implicit concurrency derived from

it.

Nemesis exempli�es the vertically-structured operating system architecture. The kernel

exports only the minimum set of functions necessary to support application-level resource

management|these are identi�ed by Barham [5] as translation, protection and multi-

plexing. Nemesis separates control- and data-plane operations|the former e.g. acquiring

access to a region of disk blocks, are typically performed by server tasks, while the latter

e.g., reading/writing those disk blocks, are optimised so as to require little or no interaction

with the kernel.

MIT's exokernel architecture is very similar to Nemesis, sharing many of the key fea-

tures i.e., exporting low-level resource management primitives, optimising data-plane op-

erations to reduce kernel interaction. Where it di�ers from Nemesis is in its use of kernel

extensibility to minimise the cost of the most common kernel operations. This concept is

described in more detail below.

The Cache kernel also provides applications with a set of low-level primitives which

87

242

support application-level resource management. However, rather than implementing pro-

tection and multiplexing, the Cache kernel instead exports a minimal core set of objects

(address spaces, threads, and kernels) upon which applications build services.

7.2.3 Extensible Operating Systems

While vertically-structured operating systems provide application-speci�c resource man-

agement by exporting low-level interfaces which applications can use to implement their

own policies, an alternative approach is to allow applications to extend the OS kernel with

functions which implement those policies. This principle is embodied in the University of

Washington's SPIN kernel [6] and, to a lesser degree, MIT's exokernel and the Synthesis

OS [47].

The SPIN system permits applications to construct kernel extensions using Modula-

3 [66], a type-safe object-oriented language. These extensions take the form of functions

executed in response to kernel events e.g., a packet being received from a network interface,

and can contain almost arbitrary sequences of code. To maintain the integrity of the

kernel certain restrictions are enforced e.g., interrupt handlers must be written in such a

manner that the kernel can safely terminate the function if it executes for too long. Thus,

by exposing low-level kernel events to applications and allowing them to execute speci�c

functions in response SPIN permits applications to embed their own resource-management

interfaces in the kernel.

The exokernel uses a more restricted form of kernel extension. Rather then allowing

applications to directly download arbitrary functions into the kernel, the exokernel instead

allows applications to specify in a function-speci�c manner the behaviour of certain func-

tions. For example, restricted languages are used to generate packet �lter functions in

order to demultiplex received network packets; similarly, the XN storage manager uses

application-speci�ed untrusted deterministic functions (UDFs) to manipulate metadata

without the kernel having to be aware of the metadata format.

Finally, much like the exokernel although in fact preceding it, Massalin's Synthesis

OS [47] made extensive use of run-time code generation to construct specialised kernel

functions. These functions were used for various tasks, including scheduling, interrupt

88

243

handling, and system call invocation. Synthesis di�ers primarily from SPIN and the ex-

okernel in that extension is controlled wholly by the kernel itself and not by applications.

Thus Synthesis is perhaps most interesting in that it reduces mechanism intrusion but

not policy intrusion|the converse approach to that taken by most other contemporary

operating systems.

7.3 Operating Systems for Network Appliances

The operating system architectures described above were originally designed to be general-

purpose systems, but many have been appropriated for use in special-purpose applications

e.g., Menage's Rcane platform [51] for supporting active network services uses Nemesis

as the base operating system. There are also a number of operating systems which, like

Piglet, have been designed speci�cally with network appliances in mind.

Ramakrishnan et al. designed and implemented a small real-time kernel as a platform

for a video-on-demand �le server [75]. Their system is as close to the de�nition of network

appliance as possible|its only function is the transmission of video �les in response to

requests received from the network. One area of similarity to Piglet is the use of polling

within device drivers for communication with network devices: this was observed to elim-

inate receive livelock and provide a degree of control over the amount of system resources

consumed by network requests.

The Scout operating system [61] introduces the concept of paths as a means for special-

ising operating system structure for particular data ows within the system. A path de�nes

a set of modules through which data ows and speci�es particular semantic properties of

that data ow. These properties are used by the Scout kernel to specialise and optimise

the modules instantiated when a path is created. Scout has been used to construct various

network appliances, including an MPEG decoding terminal [62] and an optimised TCP

forwarder [83].

MIT'sClick router [41], while not an operating system but a router implemented on

top of Linux, is also based around a modular design. Click allows users to statically

construct a router from a set of standard components, then optimises the connections

89

244

between those modules. The most interesting aspect of Click in relation to Piglet is the

use of a polling device driver, which the system designers estimate to provide a fourfold

increase in forwarding rate for minimum-size packets. They also make a similar observation

about the overhead of interrupt handling, estimating the cost on a 700MHz Pentium III

as being 4.8�s of the 13�s required to forward a packet.

Donnelly's eXpert operating system combines paths with tasks, equivalent to processes

in a conventional operating system. While paths are used for data processing, tasks are

retained for those tasks which they are better suited to, such as background maintenance

tasks which are not necessarily data-driven. eXpert is still under development but is

targeted at exactly the same set of applications as Piglet.

It is also interesting to compare Piglet to an operating system designed expressly for a

single network-appliance|Cisco's IOS [8], the operating system used in all Cisco routers.

In particular, two of the design decisions taken by the IOS architects are the same ones

taken for Piglet kernel services: there is no intra-kernel memory protection and services

are scheduled using cooperative multitasking. The success of IOS o�ers some justi�cation

that these choices are reasonable ones.

7.4 Message-based Systems

Finally, it was stated above that Piglet di�ers from microkernel operating systems in its

use of asynchronous, rather than synchronous, message passing for communication. It is

worth briey noting a number of systems which have also been based around asynchronous

message passing.

IBM's Enterprise Systems Architecture/390 mainframe [35], and its predecessors in-

cluding the System/360 and System/370, uses channels as the means by which I/O devices

are connected to the system. Channels are actually smaller computer systems to which the

main CPUs delegate the task of performing I/O. This is accomplished by means of a series

of Channel Control Words, analogous to Piglet's Posted Service Requests, which specify

operations to be performed by the channel on some I/O device. Asynchronous process-

ing of the these operations by the channel provides the same concurrency and asynchrony

90

245

bene�ts that Piglet derives from PSRs.

Message passing has also been used as a fundamental communication mechanism in

some large-scale multiprocessor computers. Prominent examples of such machines are the

MIT/Intel J-Machine [17] (`J' for jellybean, since the CPUs are designed to be inexpensive

and plentiful, like jellybeans) and the Berkeley Active Messages system [89]. The core

of the J-Machine, the Message Driven Processor (MDP), was designed to incorporate

eÆcient mechanisms for communication. Most relevant to Piglet is the addition of a special

instruction to send a message directly from user-space, and eÆcient hardware dispatch of

incoming messages to application handlers. This emphasis on reducing the application

communication overhead is similar to the motivation for shared-object communication in

Piglet, but using a network interconnect rather than shared memory.

The Active Message project was motivated by two problems observed in earlier message

passing multiprocessor systems: poor overlap of communication and computation, and high

communication overhead. These are two of the primary factors motivating Piglet, so one

would expect there to be some common ground. Indeed, von Eicken et al. found that

asynchronous communication enabled concurrency between message senders and receivers,

analogous to clients and the Piglet kernel, and direct user-space access to communication

mechanisms was important in reducing overhead.

91

246

Chapter 8

Conclusions and Future Research

The recent and continuing explosive growth of the Internet has created a requirement for

inexpensive but high-performance network appliances|systems dedicated to applications

whose primary function is the transfer of data rather than computation. This character-

istic of application behaviour presents the operating system designer with a signi�cant

opportunity for specialisation and optimisation which a general-purpose operating system

is unable to take advantage of. Hence the design and implementation of Piglet as a novel

operating system targeted speci�cally at the network appliance domain.

This thesis presents several contributions in the realm of operating system design, the

most notable being:

1. Classi�cation and analysis of di�erent forms of operating system intrusion.

2. Identi�cation of those aspects of existing operating systems which contribute to in-

trusion.

3. Design of a new operating system architecture, the Active Kernel.

4. Implementation of the �rst instance of this architecture|Piglet.

5. Evaluation of the Piglet architecture using low-level benchmarks.

6. Porting and performance measurement of a typical network appliance application|

the Flash web server.

92

247

Each of these claims will briey be expanded upon in the following sections.

8.1 Analysing Operating System Intrusion

Operating systems perform two, somewhat orthogonal, functions: virtualisation of physical

resources and provision of a library of common system functions e.g., I/O operations.

Unfortunately these two functions are often unnecessarily conated into a single entity|

the operating system kernel. This leads to suboptimal application performance if the

policies embedded within the library of system functions are not appropriate for a given

application|policy intrusion.

Various operating system architectures have been proposed, including microkernels and

vertically-structured systems, which successfully address this problem. However, another

form of intrusion|mechanism intrusion|is inherent in the service invocation mechanisms

used in these systems and those which they attempt to improve upon. Therefore a new

operating system structure is required in order to address this latter problem.

8.2 Piglet|Reducing Intrusion by Activating the Kernel

This thesis proposes a new operating system structure which goes some way toward success-

fully tackling the problem of mechanism intrusion. This is accomplished by utilising alter-

native mechanisms for traversing privilege barriers to those used in conventional systems.

The synchronous, procedure-call oriented mechanism which has been used in virtually all

existing operating systems is abandoned in favour of an asynchronous, message-passing

scheme using shared memory as the message channel. One processor in a multiprocessor

system is dedicated to continuous execution of the Active Kernel, thus elevating the kernel

from a passive shared library to an active entity.

Chapter 3 describes Piglet, a complete operating system design based upon the active

kernel and targeted at the network appliance application domain. This design has been

implemented in a hybrid Piglet-Linux system that permits applications to be created which

exercise Piglet's capabilities while utilising the existing Linux kernel for those functions

not provided by Piglet.

93

248

8.3 Performance of the Active Kernel

A signi�cant contribution of this thesis is a demonstration of performance bene�ts realised

by the Piglet architecture, and potential areas for further improvement. Microbenchmark

experiments in Chapter 5 show that Piglet successfully increases the performance of ap-

plications compared to a conventional operating system; it provides both lower latency

transmission for a given application and higher throughput of data for multiple concurrent

applications.

Characterisation of the Piglet kernel's polling function shows that polling is indeed

a viable communication mechanism for certain classes of objects, in particular shared-

memory objects used by applications to post service requests. The results obtained for

polling of I/O devices, however, suggest that a hybrid mechanism may be more appropriate

in order to guarantee acceptable system responsiveness.

Finally, the porting of an existing web server application from a conventional operating

system to the Piglet prototype was described. Even without exploiting any of Piglet's

features intended speci�cally to boost the performance of such applications the overall

performance of the web server when running on Piglet was substantially higher than when

running on the original conventional operating system.

8.4 Future Work

While the results presented herein go some way toward proving the viability of the active

kernel as an alternative to existing operating systems, further work must be carried out in

order to con�rm Piglet's suitability as a platform for network appliances.

8.4.1 Optimising the Active Kernel

One concern raised by the analysis of the main polling function is the scalability of polling

as the basis of the Piglet kernel. Two observations must be made in order to make the

system scalable: reduction of object polling and event processing time, and minimisation

of the set of objects which must be polled.

94

249

One method for optimising polling and processing time which appears potentially fruit-

ful is the use of run-time code generation, as demonstrated in the Synthesis kernel. Polling

in particular, since it usually consists of repetitive calls to a simple function, should bene�t

from inline expansion and run-time constant propagation.

The set of objects which must be polled for any given iteration of main can be reduced

by taking advantage of kernel state indicating which objects could be updated by active

processes during that iteration. For example: on an n-CPU system, only n processes can

be executing at any given time, so only the corresponding objects need be polled. Further

reduction of the polled set can be achieved by multiplexing many application-level objects

onto a single kernel polled entity e.g., many network endpoints which share QoS properties

can all share a single frameset.

8.4.2 Evaluation of Alternative Applications

Piglet must also be evaluated in more than a single application environment with the

network appliance domain. Of particular interest are forwarding appliances, since recent

trends in hardware design for such platforms are toward heterogeneous processing capa-

bilities in a single system. For example, Intel's IXP1200 network processor [36] places a

StrongARM core on an ASIC with six micromachines for packet forwarding; several of

these devices are then attached to the PCI bus of a standard PC host system to create

a high-performance router. Such systems require simple but high-performance operating

systems to execute on the control processor (StrongARM) which communicates with both

host and forwarders|Piglet would appear to be an ideal candidate.

95

250

Appendix A

Linux ping Execution Trace

These measurements show the value of the (64-bit) timestamp counter recorded at the

point of entry (Exxx) and exit (Lxxx) from each function executed in the transmit path of

the Linux kernel `raw' IP stack. They are represented graphically in Figure 5.3.

begin_pinger: 1328188896

begin_send: 1328190439

Esys_sendto: 1328191174

Einet_sendmsg: 1328191857

Eraw_sendto: 1328192100

Eip_build_xmit: 1328192463

Eboomerang_tx: 1328194362

Lboomerang_tx: 1328195466

Lip_build_xmit: 1328195607

Lraw_sendto: 1328195709

Linet_sendmsg: 1328195919

Lsys_sendto: 1328196051

end_send: 1328196717

Evortex_interrupt: 1328198649

vortex_down_complete: 1328199105

Lvortex_interrupt: 1328200575

begin_select: 1328212147

96

251

Evortex_interrupt: 1328216275

vortex_up_complete: 1328216717

Enetif_rx: 1328218164

Lnetif_rx: 1328218346

Lvortex_interrupt: 1328219074

Enet_bh: 1328220307

Eip_rcv: 1328220967

Eicmp_rcv: 1328222086

Licmp_rcv: 1328222720

Lip_rcv: 1328223124

Lnet_bh: 1328223209

end_select: 1328225838

Esys_recvfrom: 1328226744

Einet_recvmsg: 1328227308

Eraw_recvmsg: 1328227560

Lraw_recvmsg: 1328228682

Linet_recvmsg: 1328228841

Lsys_recvfrom: 1328229369

got_packet: 1328230030

97

252

Bibliography

[1] Apache Software Foundation. Apache HTTP Server. www.apache.org/httpd.html.

[2] A. W. Appel and K. Li. Virtual memory primitives for user programs. In Proc. of the

4th Int'l. Conf. on Architectural Support for Programming Languages and Operating

Systems, pages 95{109, October 1991.

[3] Various Artists. Squid Web Proxy Cache. www.squid-cache.org/.

[4] G. Back, W. C. Hsieh, and J. Lepreau. Processes in Ka�eOS: Isolation, resource

management, and sharing in Java. In Proc. of the 4th Symp. on Operating Systems

Design and Implementation, October 2000.

[5] P. R. Barham. Devices in a Multi-Service Operating System. PhD thesis, University

of Cambridge, July 1996.

[6] B. Bershad et al. Extensibility, safety and performance in the SPIN operating system.

In Proc. of the 15th ACM Symp. on Operating Systems Principles, pages 267{284,

December 1995.

[7] Mats Bj�orkman and Per Gunningberg. Locking e�ects in multiprocessor implemen-

tation of protocols. In Proc. of ACM SIGCOMM Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communications, pages 74{83,

September 1993.

[8] Vijay Bollapragada et al. Inside Cisco IOS Software Architecture. Cisco Press, 2000.

[9] CERT Coordination Center. Advisory CA-2001-02, Multiple Vulnerabilities in BIND,

January 2001. www.cert.org/advisories/CA-2001-02.html.

98

253

[10] F. Chang and G. A. Gibson. Automatic I/O hint generation through speculative exe-

cution. In Proc. of the 3rd Symp. on Operating Systems Design and Implementation,

pages 1{14, February 1999.

[11] D. R. Cheriton and K. J. Duda. A caching model of operating system functionality.

In Proc. of the 1st Symp. on Operating Systems Design and Implementation, pages

179{193, November 1994.

[12] D. Clark. The structuring of systems using upcalls. Proc. of the 10th ACM Symp. on

Operating Systems Principles, pages 171{180, 1985.

[13] Compaq Computer Corp., Intel Corporation, Microsoft Corporation. Virtual Interface

Architecture Speci�cation Version 1.0, 1997. www.viarch.org.

[14] Eric C. Cooper et al. Protocol implementation in the nectar communication processor.

In Proc. of ACM SIGCOMM Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications, pages 135{144, September 1990.

[15] Fernando J. Corbat�o et al. An experimental time-sharing system. In AFIPS Con-

ference Proceedings (Spring Joint Computer Conference), volume 21, pages 335{344,

May 1962.

[16] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal of Research

and Development, 25(5):483{490, September 1981.

[17] W. J. Dally et al. The message-driven processor: A multicomputer processing node

with eÆcient mechanisms. IEEE Micro, pages 23{39, April 1992.

[18] C. Dougan et al. Optimizing the idle task and other MMU tricks. In Proc. of the 3rd

Symp. on Operating Systems Design and Implementation, pages 229{236, February

1999.

[19] Aled Edwards and Steve Muir. Experiences implementing a high-performance TCP in

user-space. In Proc. of ACM SIGCOMM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, pages 196{205, Septem-

ber 1995.

99

254

[20] D. Engler et al. Checking system rules using system-speci�c, programmer-written

compiler extensions. In Proc. of the 4th Symp. on Operating Systems Design and

Implementation, October 2000.

[21] D. R. Engler et al. Exokernel: An operating system architecture for application-

level resource management. In Proc. of the 15th ACM Symp. on Operating Systems

Principles, pages 251{266, December 1995.

[22] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, exible message demulti-

plexing using dynamic code generation. In Proc. of ACM SIGCOMM Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communica-

tions, pages 53{59, August 1996.

[23] R. Greenblatt. The LISP machine. Technical Report Working Paper 79, MIT Arti�cial

Intelligence Laboratory, November 1974.

[24] Dan Grossman and Gregg Morrisett. Scalable certi�cation for typed assembly lan-

guage. In Proc. of the 2000 ACM SIGPLAN Workshop on Types in Compilation,

September 2000.

[25] Linley Gwennap. Cisco rolls its own NPU, November 2000. Microprocessor Report

11/6/00-02.

[26] G. Hamilton and P. Kougiouris. The Spring nucleus: A microkernel for objects. In

Proc. of the Summer USENIX Technical Conference, pages 147{160, June 1993.

[27] Richard A. Hammond. Experiences with the Series/1 Distributed System. In Proc. of

the 21st IEEE Computer Society Int'l Conference (COMPCON 80), pages 585{589,

Fall 1980.

[28] S. M. Hand. Self-paging in the Nemesis operating system. In Proc. of the 3rd Symp.

on Operating Systems Design and Implementation, pages 73{86, February 1999.

[29] H. Hartig et al. The performance of �-kernel based systems. In Proc. of the 16th ACM

Symp. on Operating Systems Principles, pages 66{77, December 1997.

100

255

[30] K. Harty and D. R. Cheriton. Application-controlled physical memory using external

page-cache management. In Proc. of the 5th Int'l. Conf. on Architectural Support for

Programming Languages and Operating Systems, pages 187{199, October 1992.

[31] John L. Henning. SPEC CPU2000: Measuring CPU performance in the new millen-

nium. IEEE Computer, 33(7):28{35, July 2000.

[32] Luke Hornof. Self-specializing mobile code for adaptive network services. In Proc. of

the Int'l Working Conference on Active Networks, volume 1942 of Lecture Notes in

Computer Science. Springer-Verlag, October 2000.

[33] Luke Hornof and Trevor Jim. Certifying compilation and run-time code generation.

Journal of Higher-Order and Symbolic Computation, 12(4), December 1999.

[34] N. C. Hutchinson and L. L. Peterson. The x -kernel: An architecture for implementing

network protocols. IEEE Transactions on Software Engineering, 17(1):64{76, January

1991.

[35] IBM Corporation. Enterprise Systems Architecture/390: Principles of Operation.

IBM Corporation, 1997. Document number SA22-7201-04.

[36] Intel Corporation. Intel IXP1200 network processor: Intelligent network solutions at

the speed of internet growth, 2000. download.intel.com/design/network/prodbrf/

279014.pdf.

[37] Internet Software Consortium. BIND (Berkeley Internet Name Domain).

www.isc.org/products/BIND/.

[38] V. Jacobson. Compressing TCP/IP headers for low-speed serial links, February 1990.

RFC-1144.

[39] M. F. Kaashoek et al. Application performance and exibility on Exokernel systems. In

Proc. of the 16th ACM Symp. on Operating Systems Principles, pages 52{65, October

1997.

101

256

[40] Robert E. Kahn and Vinton G. Cerf. What is the Internet (and what makes it work),

December 1999. www.worldcom.com/about the company/cerfs up/

internet history/whatIs.phtml.

[41] Eddie Kohler et al. The Click modular router. ACM Transactions on Computer

Systems, 18(3):263{297, August 2000.

[42] Ian Leslie et al. The design and implementation of an operating system to support

distributed multimedia applications. IEEE/ACM Journal on Selected Areas in Com-

munications, 14(7):1280{1297, September 1996.

[43] J. Liedtke. Improving IPC by kernel design. In Proc. of the 14th ACM Symp. on

Operating Systems Principles, pages 175{188, December 1993.

[44] Barbara Liskov et al. CLU Reference Manual. Springer-Verlag, New York, NY, 1981.

[45] H. Lycklama and D. L. Bayer. The MERT operating system. The Bell System Tech-

nical Journal, 57(6):2049{2086, July/August 1978.

[46] Stephen Manley and Margo I. Seltzer. Web facts and fantasy. In USENIX Symposium

on Internet Technologies and Systems, December 1997.

[47] Henry Massalin. An EÆcient Implementation of Fundamental Operating System Ser-

vices. PhD thesis, Columbia University, 1992.

[48] Steven McCanne and Van Jacobson. The BSD packet �lter: A new architecture for

user-level packet capture. In Proc. of the Winter USENIX Conference, pages 259{269,

January 1993.

[49] Larry McVoy and Carl Staelin. lmbench: Portable tools for performance analysis. In

Proc. of the Annual USENIX Technical Conference, pages 279{294, January 1996.

[50] George H. Mealy. Operating systems. Technical report, Rand Corporation, May 1962.

[51] Paul Menage. Rcane: A resource controlled framework for active network services. In

Proc. of the 1st Int'l Working Conference on Active Networks, June 1999.

102

257

[52] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity reserves: An abstraction

for managing processor usage. In Proc. of the 4th Workshop on Workstation Operating

Systems (WWOS-IV), pages 129{134, October 1993.

[53] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking

concurrent queue algorithms. In Proc. of the 15th Annual Symposium on Principles

of Distributed Computing, pages 267{275, May 1996.

[54] Geo�rey Milord. Segment protection with the Piglet OS. Master's thesis, University

of Pennsylvania, December 2000.

[55] Mindcraft, Inc. WebStone: The benchmark for web servers, 2000.

www.mindcraft.com/webstone/.

[56] P. Mockapetris. Domain names|concepts and facilities, November 1983. RFC 882.

[57] P. Mockapetris. Domain names|implementation and speci�cation, November 1983.

RFC 883.

[58] J. C. Mogul and A. Borg. The e�ect of context switches on cache performance. In

Proc. of the 4th Int'l. Conf. on Architectural Support for Programming Languages and

Operating Systems, pages 75{84, April 1991.

[59] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an interrupt-

driven kernel. ACM Transactions on Computer Systems, 15(3):217{252, August 1997.

[60] Greg Morrisett et al. From System F to typed assembly language. ACM Transactions

on Programming Languages, 21(3):528{569, May 1999.

[61] D. Mosberger. Scout: A path-based operating system. PhD thesis, University of Ari-

zona, 1997.

[62] D. Mosberger and L. L. Peterson. Making paths explicit in the Scout OS. In Proc.

of the 2nd Symp. on Operating Systems Design and Implementation, pages 153{168,

1996.

103

258

[63] Steve Muir and Jonathan Smith. AsyMOS|an asymmetric multiprocessor operating

system. In Proc. of the 1st IEEE Conference on Open Architectures and Network

Programming, June 1998.

[64] Steve Muir and Jonathan Smith. Supporting continuous media in the Piglet OS. In

Proc. of the 8th Int'l Workshop on Network and Operating Systems Support for Digital

Audio and Video, July 1998.

[65] Erich M. Nahum et al. Performance issues in parallelized network protocols. In Proc.

of the 1st Symp. on Operating Systems Design and Implementation, pages 125{137,

November 1994.

[66] Greg Nelson. Systems Programming with Modula-3. Prentice-Hall, April 1991.

[67] Douglas Niehaus et al. Architecture and OS support for predictable real-time systems.

Technical report, Department of Computer Science, University of Massachusetts,

March 1992.

[68] E. I. Organick. The Multics System. MIT Press, Cambridge, MA, 1972.

[69] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An eÆcient and portable web

server. In Proc. of the Annual USENIX Technical Conference, June 1999.

[70] R. Hugo Patterson et al. Informed prefetching and caching. In Proc. of the 15th ACM

Symp. on Operating Systems Principles, pages 79{95, December 1995.

[71] Jon Postel. Internet protocol, September 1981. RFC 791.

[72] Jonathan B. Postel. Simple Mail Transfer Protocol, August 1982. RFC 821.

[73] Ian Pratt and Keir Fraser. Arsenic: A user-accessible gigabit ethernet interface.

www.cl.cam.ac.uk/users/iap10/gige.ps, 2000.

[74] K. K. Ramakrishnan. Performance considerations in designing network interfaces.

IEEE/ACM Journal on Selected Areas in Communications (Special Issue on High

Speed Computer/Network Interfaces), 11(2), February 1993.

104

259

[75] K. K. Ramakrishnan et al. Operating system support for a video-on-demand �le

service. ACM/Springer-Verlag Journal on Multimedia Systems, 3, March 1995.

[76] R. Rashid et al. Mach: A foundation for open systems. In Proc. of the 2nd Workshop

on Workstation Operating Systems (WWOS-II), pages 109{113, September 1989.

[77] R. Rashid et al. Mach: A system software kernel. In Proc. of the 34th IEEE Computer

Society Int'l Conference (COMPCON 89), pages 176{178, February 1989.

[78] Hans Reiser. ReiserFS, January 2001. www.reiserfs.org.

[79] Sendmail Consortium. Sendmail. www.sendmail.org/.

[80] J. S. Shapiro et al. Eros: a fast capability system. In Proc. of the 17th ACM Symp.

on Operating Systems Principles, pages 170{185, December 1999.

[81] W. David Sincoskie and David J. Farber. The Series/1 Distributed System: Descrip-

tion and comments. In Proc. of the 21st IEEE Computer Society Int'l Conference

(COMPCON 80), pages 579{584, Fall 1980.

[82] Jonathan M. Smith and C. Brendan S. Traw. Giving applications access to Gb/s

networking. IEEE Network, 7(4):44{52, July 1993.

[83] Oliver Spatscheck et al. Optimizing TCP forwarder performance. IEEE/ACM Trans-

actions on Networking, 8(3):146{157, June 2000.

[84] Daniel Stenberg et al. cURL: a client that groks the URLs, March 2001.

curl.haxx.se.

[85] M. Stonebraker. Operating system support for database management. Communica-

tions of the ACM, 24(7):412{417, July 1981.

[86] Andrew S. Tanenbaum et al. Experiences with the Amoeba distributed operating

system. Communications of the ACM, 33(12):46{63, December 1990.

[87] C. A. Thekkath et al. Implementing network protocols at user level. In Proc. of ACM

SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications, pages 64{73, September 1993.

105

260

[88] C. Brendan S. Traw and Jonathan M. Smith. Hardware/software organisation of a

high-performance ATM host interface. IEEE/ACM Journal on Selected Areas in Com-

munications (Special Issue on High Speed Computer/Network Interfaces), 11(2):240{

253, February 1993.

[89] T. von Eicken et al. Active messages: a mechanism for integrated communication and

computation. In Proc. of the 19th Int'l Symposium on Computer Architecture, pages

256{266, May 1992.

[90] T. von Eicken et al. U-Net: A user-level network interface for parallel and distributed

computing. In Proc. of the 15th ACM Symp. on Operating Systems Principles, pages

40{53, December 1995.

[91] Curtis Yarvin, Richard Bukowski, and Thomas Anderson. Anonymous RPC: Low-

latency protection in a 64-bit address space. In Proc. of the Summer USENIX Tech-

nical Conference, pages 175{186, June 1993.

[92] L. Zhang. Virtual Clock: A new traÆc control algorithm for packet switching net-

works. In Proc. of ACM SIGCOMM Conference on Applications, Technologies, Ar-

chitectures, and Protocols for Computer Communications, pages 19{29, September

1990.

106

261

262

263

264

265

266

267

268

269

270

271

APPLIED PHYSICS LETTERS VOLUME 80, NUMBER 17 29 APRIL 2002
Resonant-cavity-enhanced heterostructure metal–semiconductor–metal
photodetector

Xiying Chen and Bahram Nabeta)

Electrical and Computer Engineering Department, Drexel University, Philadelphia, Pennsylvania 19104

Fabio Quaranta and Adriano Cola
Institute of Microelectronics, National Research Council (C.N.R.-I.M.E.), Via Arnesano I-73100 Lecce, Italy

Marc Currie
Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, DC 20375

~Received 24 October 2001; accepted for publication 17 February 2002!

We report a GaAs-based high-speed, resonant-cavity-enhanced, heterostructure metal–
semiconductor–metal photodetector with Al0.24Ga0.76As/Al0.9Ga0.1As distributed Bragg reflector
operating around 850 nm. The photocurrent spectrum shows a clear peak at this wavelength with
full width at half maximum~FWHM! of around 30 nm. At resonance wavelength, a seven-fold
increase can be achieved in quantum efficiency compared to a detector of the same absorption depth.
The top reflector is a delta modulation doped Al0.24Ga0.76As that also acts as the barrier enhancement
layer thus providing very low dark current values. The breakdown voltage is above 20 V. Time
response measurements show rise time, fall time, and FWHM of 8.8 ps, 9 ps, and 8.1 ps,
respectively, giving a 3-dB bandwidth of about 33 GHz. Combination of low dark current, fast
response, wavelength selectivity, and compatibility with high electron mobility transistors makes
this device especially suitable for short haul communications purposes. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1470224#
v-
e

-i-
is

de

e
um
in
n

to

na
o
r

in
uc
o
s
d

bl
-
l

t

o-
effi-
tec-
for

pon-
ch-
en

in
eed
w-
re-
an

rri-

rot
es

on-
eri-

ctor
re

oton
al-
o-
e-
is

ring

can
In addition to their important application in vertical ca
ity surface emitting lasers, resonant cavities have been
ploited in the design of vertical photodetectors, such as p
heterojunction photodiodes, Schottky barrier internal em
sion photodiodes, and quantum-well infrared photo
tectors.1–3 Resonant-cavity-enhanced~RCE! photodetectors
have attracted much attention in the past few years du
their potential in solving the trade off between high quant
efficiency and high speed while, at the same time, offer
spectral bandwidth filtering useful in wavelength-divisio
multiplexing applications.4

On the other hand, the trend towards monolithic op
electronic integrated circuits~OEIC! motivates appreciable
research activity directed towards the employment of pla
photodetectors, which can be easily fabricated and are c
patible with the field-effect transistor~FET! process. Plana
metal–semiconductor–metal photodetectors~MSM-PDs! are
good candidates for such OEIC receivers.5,6 The FET tech-
nology itself is strongly effected by progress
heterojunction-based devices that take advantage of red
dimensionality regime of conduction; the high electron m
bility transistor ~HEMT! being a prime example. This ha
motivated the development of heterojunction based photo
tectors that enjoy better conduction while being compati
with HEMT technology.5 In particular, we have pre
viously proposed AlGaAs/GaAs heterostructure meta
semiconductor–metal photodetectors~HMSM-PDs! that
show much less dark current than conventional MSM due
both the two-dimensional electron gas~2DEG! and the effect
of barrier enhancement due to the wide-gap material.7–9

a!Electronic mail: nabet@ece.drexel.edu 272
0003-6951/2002/80(17)/3222/3/$19.00
Downloaded 11 Apr 2003 to 128.132.162.117. Redistribution subject to A
x-
n
-
-

to

g

-

r
m-

ed
-

e-
e

–

o

A common problem with planar, as well as vertical, ph
todetectors is the trade off between speed and quantum
ciency; in order to achieve a fast response from photode
tors, the depleted absorption region needs to be small
reduced path length, but this results in a decreased res
sivity due to small absorption depth. Resonant cavity te
nique offers the possibility to balance such conflict betwe
fast speed and sensitivity.10 The photodetector presented
this letter employs a vertical resonance cavity for high-sp
operation, the heterojunction that forms its top mirror, ho
ever, not only doubles as a barrier enhancement layer to
duce dark current but also is modulation doped to produce
internal electric field that aids in the transport of photoca
ers.

A typical RCE photodetector is made of a Fabry–Pe
cavity, with a mirror on each end, whose length determin
the resonant frequency. In practice, the bottom mirror c
sists of quarter-wave stacks of two different suitable mat
als forming a distributed Bragg reflector~DBR!. The top
mirror can be the interface between the native semicondu
and air due to their large difference of refractive index; he
we use a delta-doped heterojunction to achieve better ph
reflection as well as other important electronic function
ities. Figure 1 shows a simplified structure of our RCE ph
todetector, whereL1 is the nonabsorbing barrier enhanc
ment layer. Recirculation of photons from the top of th
layer and the bottom DBR, allows a thin absorption layerL2

to be used to minimize the response time without hampe
the quantum efficiency. Here quantum efficiency~h! is de-
fined as the ratio of absorbed to incident photons, which
be written as:4
© 2002 American Institute of Physics
IP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp

Appl. Phys. Lett., Vol. 80, No. 17, 29 April 2002 Chen et al.
h5~12R1!~12e2aL2!H ~11R2e2aL2!

122AR1R2e2aL2 cos~2bL1C11C2!1R1R2e22aL2
J , ~1!
-

fo
ve
n

s
e
g
n
o

om

ng
th
e
.
a

lta
o
o

hi
ll
av
u

a

th

-
of

and
wn

nc-
n

ting

ot-
en-
ent

ped

vice

e
the
ion
y

of
ut

y
ing

um
nt
so-
an-

ith
th.

nm
at

p

3

wherebL5b1L11b2L2 , R1 , andR2 are the top and bot
tom mirror reflectivities, respectively,a is the absorption co-
efficient of the absorption layer,C1 andC2 are phase shifts
introduced by top and bottom mirrors, andb1 andb2 are the
propagation constants in these two materials. From this
mula, quantum efficiency is maximized by a highly reflecti
DBR, i.e., when R2 is large, and when the conditio
cos(2bL1C11C2)51 is satisfied.

There are three requirements for the materials to be
lected to construct the bottom mirror: large refractive ind
difference, lattice matching to GaAs substrates, and band
larger than that of the active layer so that photons are
absorbed in this layer. Based on their natural material pr
erties, Al0.24Ga0.76As and Al0.9Ga0.1As are suitable pairs to
construct this DBR mirror.11 The top mirror should reduce
reflection from air and recirculate the photons reflected fr
the bottom mirror. A 55 nm layer of Al0.24Ga0.76As has been
employed for this purpose, which also offers the followi
electronic properties. First, this layer lattice matches to
absorption layer, with reducedDX-center defect levels du
to low Al mole fraction, while providing surface stability
Second, it enhances the Schottky barrier between metal
GaAs due to its larger band gap. Third, this layer is de
doped to produce a 2DEG that is confined to the vicinity
the heterojunction by the conduction band discontinuity
about 0.3 eV. The last is the most important feature of t
device. The confined electronic states of the quantum we
the interface as well as the electron cloud of the 2DEG h
been shown to further enhance the barrier height and red
the dark current, and thus the noise of these detectors.12 This
electron cloud is confined by a vertical electric field that h
also been shown to aid in transport of photoelectrons.9 Fi-
nally, modulation doping of this layer makes the grow

FIG. 1. Schematic diagram of the RCE heterojunction photodetector.R1 and
R2 are reflectivities andC1 andC2 are phase shifts introduced by the to
and bottom mirrors, respectively.

27
Downloaded 11 Apr 2003 to 128.132.162.117. Redistribution subject to A
r-

e-
x
ap
ot
p-

e

nd
-
f
f
s
at
e
ce

s

compatible with HEMT. This top AlGaAs layer is delta
doped, rather than uniformly, in order to take advantage
high channel electron density, reduced trapping effects,
improved threshold voltage as well as high breakdo
characteristics.13,14

A schematic cross section of the grown RCE heteroju
tion MSM is shown in Fig. 2. The layer structure was grow
by solid-source molecular-beam epitaxy on a semi-insula
GaAs substrate. Twenty periods Al0.24Ga0.76As/Al0.9Ga0.1As
DBR were grown on a 200 nm GaAs buffer layer. The b
tom mirror was designed for high reflectance at 830 nm c
ter wavelength. The thickness of the top barrier enhancem
layer is 50 nm and the spacer layer is 5 nm. A Si delta-do
layer with sheet density of 531012 cm22 was grown be-
tween barrier enhancement and spacer layers. The de
area was 40340mm2 with a typical interdigital pattern with
finger width of 1mm and distance of 4mm.

A transmission line model4 was employed to design th
layered structure and to simulate the optical properties of
RCE HMSM photodetector. The thickness of the absorpt
layer,L2 , is calculated by optimizing the quantum efficienc
~1!, which results in the condition 2(b1L11b2L2)1C1

1C252mp. This condition is satisfied for integer values
m, with a higher number giving longer absorption length b
slower response. A lengthL25117.5 nm was a satisfactor
trade off between speed and responsivity while still be
only a fraction~11%! of the penetration depth.

Figure 3 shows the simulation results of the quant
efficiencies as a function of wavelength at two differe
angles of incidence. Compared to a device without a re
nant cavity, a seven-fold enhancement is achieved in qu
tum efficiency. The peak of quantum efficiency varies w
angle of incidence due to a difference in optical path leng
The calculated full width at half maximum~FWHM! is
around 30 nm. This value can be reduced to less than 10
if the reflectance of the top mirror is larger than 0.9, but th

FIG. 2. Device structure of the RCE HMSM photodetector.

IP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp

tr
ith
v

wa
w
a

gle
M
tio
ns
ab
it
o
3.
ve
in

e
-
ze

e

eti-
ve-
of a

ias.
its
of

ity-
850
ity,
ics.
gth
e
es.

rd
by

tt.

J.

nd I.

d A.

,

on

uc

ed

lated

Appl. Phys. Lett., Vol. 80, No. 17, 29 April 2002 Chen et al.
would require a much thicker layered structure.
Figure 4 shows the experimental photocurrent spec

response of the RCE-HMSM-PD. A monochrometer w
0.15 nm resolution was used to select the excitation wa
length from a chopped tungsten light source. The signal
measured by a lock-in amplifier. The spectral response
measured under 10 V reverse bias. The resonant peak v
is around 850 nm due to the angle of incidence of the sin
mode fiber optic line, in accordance with Fig. 3. The FWH
value is seen to be in good agreement with the simula
results of Fig. 3. The shape of the photocurrent respo
however, is asymmetric. This is due to the fundamental
sorption edge of GaAs, which is around 870 nm and lim
low energy absorption. Also, Fig. 4 is not normalized to ph
ton flux, which would make it more comparable with Fig.
Finally, dependence of the absorption coefficient on wa
length is not included in the simulation. A large increase
the photocurrent is observed around 710 nm, which is du
absorption in Al0.24Ga0.76As layers. Dark current of the de
vice was around 15 picoamps at this bias, which normali
to the very low value of 9.2 femtoamps/mm2 of device area.

High-speed time response measurements were mad

FIG. 3. Simulation results for the quantum efficiency of the layered str
ture as a function of wavelength for two different incident angles.

FIG. 4. Photocurrent spectral response of the RCE HMSM-PD measur
10 V reverse bias.
Downloaded 11 Apr 2003 to 128.132.162.117. Redistribution subject to A

274
al

e-
s

as
lue
-

n
e,
-

s
-

-

to

s

us-

ing a mode-locked Ti: Sapphire laser, operating at a rep
tion rate of 76 MHz that generated 100 fs pulses at a wa
length of 850 nm. Figure 5 shows the temporal response
photodetector with a 1mm finger and 4mm spacing between
fingers, measured by a 50 GHz sampling scope at 20 V b
As seen in Fig. 5, FWHM of the time response is 8.1 ps,
rise time is 8.8 ps, and fall time is 9 ps. Fourier transform
the data is shown in the inset of Fig. 5 and has a 3 dB
~photocurrent! bandwidth of 34 GHz.

In conclusion, we have demonstrated a resonant-cav
enhanced, heterostructure MSM-PD operating around
nm. The device exhibited wavelength channel selectiv
high quantum efficiency, and high-speed characterist
Combination of low dark current, fast response, wavelen
selectivity, and integrability with HEMTs makes this devic
especially suitable for short haul communications purpos

This work was partially supported by NSF ECS awa
0117073 and DARPA NGI program. Wafers were grown
RJM Semiconductors Inc.

1E. Özbay, Ï. Kimukin, N. Biyikli, O. Aytür, M. Gökkavas, G. Ulu, M. S.
Ünlü, R. P. Mirin, K. A. Bertness, and D. H. Christensen, Appl. Phys. Le
74, 1072~1999!.

2I. Kimukin, E. Ozbay, N. Biyikli, T. Kartaloglu, O. Aytu¨r, M. S. Unlu, and
G. Tuttle, Appl. Phys. Lett.77, 3890~2000!.

3A. Shen, H. C. Liu, M. Gao, E. Dupont, M. Buchanan, J. Ehret, G.
Brown, and F. Szmulowicz, Appl. Phys. Lett.77, 2400~2000!.

4M. S. Ünlü and S. Strite, J. Appl. Phys.78, 607 ~1995!.
5J. H. Burroughes, IEEE Photonics Technol. Lett.3, 660 ~1991!.
6P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, a
Adesida, IEEE Photonics Technol. Lett.10, 582 ~1998!.

7J. Culp, B. Nabet, F. Castro, and A. Anwar, Appl. Phys. Lett.73, 1562
~1998!.

8B. Nabet, IEEE Photonics Technol. Lett.9, 223 ~1997!.
9B. Nabet, A. Cola, F. Quaranta, M. Cesareo, R. Rossi, R. Fucci, an
Anwar, Appl. Phys. Lett.77, 4007~2000!.

10Z.-M. Li, D. Landheer, M. Veilleux, D. R. Conn, R. Surridge, J. M. Xu
and R. I. McDonald, IEEE Photonics Technol. Lett.4, 473 ~1992!.

11S. Adachi, J. Appl. Phys.58, R1 ~1985!.
12A. Anwar and B. Nabet, IEEE Trans. Microwave Theory Tech.50, 68

~2002!.
13N. Moll, M. R. Heuschen, and A. Fisher-Colbrie, IEEE Trans. Electr

Devices35, 879 ~1988!.
14E. F. Schubert, J. Vac. Sci. Technol. A8, 2980~1990!.

-

at

FIG. 5. Temporal response of the photodetector; insert shows the calcu
frequency response.
IP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp

Experimental Field Trial of Waveband Switching and
Transmission in a Transparent Reconfigurable Optical Network

Paul Toliver, Robert J. Runser, Jeffrey Young, and Janet Jackel

Telcordia Technologies, 331 Newman Springs Rd., Red Bank, NJ 07701
Tel: (732) 758-3057; Fax: (732) 758-4372; email: ptoliver@research.telcordia.com

Abstract: We demonstrate 4-channel, 25GHz-spaced waveband transmission in a 200GHz
passband through a transparent reconfigurable optical network. We investigate the impact of
polarization effects on the waveband and its interaction with MEMS and LiNbO3 switch fabrics.

275

Introduction
Waveband switching is a technique in which a subset of wavelengths are grouped together

and switched optically as a single entity through a transparent network infrastructure. The
individual wavelengths of a waveband are commonly assumed to be contiguous in spectrum,
although they could also be interleaved or arbitrarily spaced. One of the key advantages of
switching groups of wavelengths that share a common multi-hop path rather than individual
wavelengths is that fewer ports are required on the switch fabrics of photonic cross-connects at
transit nodes. Wavebands can also be used to upgrade the capacity of existing transparent
networks without requiring any changes to the core network elements provided the waveband
signals generated at the edge fit within the allowable optical passbands. This technique can also
be used to support higher channel bandwidths on fiber paths that would otherwise require costly
impairment compensation or regeneration.

The benefits of waveband switching have been studied by a number of groups from an
architectural perspective [1, 2]. To date, however, there have been few reports discussing the
practical implementation issues over real networks. Here, we present the results of waveband
switching experiments that were demonstrated on the Advanced Technology Demonstration
Network (ATDnet)—an optical network testbed that links a number of government agency
laboratories in the Washington, D.C. metropolitan area (see Fig. 1). Under the MONET
program, the original ATDnet testbed was designed to support only 8 x 2.5 Gb/s wavelengths per
fiber [3]. The infrastructure of the East Ring supports network elements (NEs) that are optically
transparent enabling the possibility for considerably higher bandwidths but with the need for
external dispersion compensating elements. For the particular results summarized in this paper,
the waveband switching experiments primarily utilized paths through the MEMS and LiNbO3-
based transparent wavelength selective cross-connects (WSXC) located at both the Laboratory
for Telecommunication Sciences (LTS) and the Naval Research Laboratory (NRL).

DIA
NRL

NASA
DISA

DARPA

LiNbO3 WSXC

OEO OADM

MEMS WSXC

LTS

EDFA

Client λ
Fiber pair

West
Ring

East
Ring

LiNbO3 OADM

Fig. 1. ATDnet testbed comprised of both transparent and non-transparent network elements.

Experiment
The transparent network elements within ATDnet are capable of supporting at least 8

wavelength passbands on a 200 GHz ITU frequency grid. We performed our waveband
switching experiments using the second 200 GHz window, which is centered at 1550.92 nm,
while other single wavelength signals, such as OC-48 ATM, populated the remaining seven
spectral windows.

As illustrated in Fig. 2, a 4-channel waveband transmitter (WB Tx) and a 4-channel
waveband receiver (WB Rx) were constructed and connected to the add/drop ports of a WSXC

276

located at the LTS. The WSXC allowed us to switch the waveband signal through various
transparent paths of ATDnet. The four sub-channels of the WB Tx, which consists of an array of
tunable lasers followed by an array of electro-optic modulators, are passively multiplexed
together on a 25 GHz grid and their amplitudes are equalized before the WSXC add port. The
WB Rx consists of a cascaded array of fiber Bragg grating filters (each 15 GHz wide) and
circulators along with an array of four photoreceivers. Since the ATDnet NEs are optically
transparent, no changes or hardware upgrades were required to support the waveband client
signal. Such an upgrade would have been impossible given an OEO switched network.

ATDNet

WSXC [LTS]

WSXC [NRL]

λ2.a
λ2.b
λ2.c
λ2.d

WB Tx WB Rx

add
drop

Fig. 2. Experimental setup for waveband switching demonstration.

Results
In Figure 3, we show the 4-channel waveband signal contained within a spectral window

that is approximately 120 GHz wide and centered at 1550.92 nm. This particular window is
defined by the optical mux and demux components inside the MEMS-based WSXC. As shown
by the “add” signal plot, the four waveband sub-channels are set to the following wavelengths:
λ2a=1550.52, λ2b=1550.72, λ2c=1550.92, and λ2d=1551.12 nm. The waveband was transmitted
over approximately 100 km of SMF-28 fiber on a loopback path between the LTS and NRL
through MEMS-based WSXCs located at each node. The entire waveband is received at the
drop port, although the λ2a sub-channel is attenuated slightly due to its proximity to the passband
edge of the NE muxes and demuxes.

Fig. 3. Plot of add/drop waveband spectrums and passband spectral window.

277

The recovered bit error rates (BERs) of all four sub-channels after transmission through the
two WSXCs, 100 km of fiber, and optical amplifiers (integrated into the NEs) is shown in Fig. 4.
For these BER results, the waveband sub-channels are modulated with decorrelated OC-48
(2.488 Gb/s) pseudo-random data streams (223-1). The average receiver sensitivity given a BER
of 109 is –34.4 dBm. Compared to back-to-back operation, the power penalty for the four sub-
channels is only 0.1 dB. This experiment demonstrates that an existing transparent network
infrastructure originally designed for 2.5 Gb/s capacity per passband can support 10 Gb/s per
passband using wavebanding techniques at the edge of the network without requiring changes to
core network elements or transmission fibers.

Fig. 4. Bit error rate performance with four 2.5 Gb/s channels in waveband.

We also investigated the ability to modulate the individual sub-channels at 10 Gb/s, which

provides a total passband capacity of 40 Gb/s within the transmission window. In this
experiment, all four wavelengths were modulated by through a common 10 Gb/s electro-optic
modulator. Pre- and post-dispersion compensating fibers were used to support the 10 Gb/s sub-
channels over the 100 km SMF-28 network span. The resulting BER performance for the four
10 Gb/s sub-channels is summarized in Fig. 5. The average receiver sensitivity at a BER of 10E-
9 is –17.8 dBm. The average power penalty across the four sub-channels was 1.1 dB, with λ2a
having the largest penalty of 1.5 dB. The increased power penalty is likely to be a result of the
channel proximity to the passband edge causing greater signal distortion due to filter dispersion.
It would not have been possible to achieve the transmission of a single 40 Gb/s wavelength
within an ATDnet passband without subsequent compensation for PMD.

278

Fig. 5. Bit error rate performance of four 10 Gb/s sub-channels of the waveband.

Impact of polarization effects
An important physical layer issue to consider in a waveband switched network is the impact

of how impairments may impact individual sub-channels of the waveband differently. In
particular, polarization effects such as polarization dependent loss (PDL) can be particularly
important for transparent NEs that use optical switch fabrics such as LiNbO3. The ATDnet
contains NEs with both MEMS and LiNbO3 fabric technologies. The PDL for the loopback path
for the MEMS-based WSXCs was less than 0.5 dB for waveband sub-channels λ2b, λ2c, and λ2d
and did not vary significantly based on the launched polarization orientation of the subchannels.
The first sub-channel (λ2a) had a higher PDL value of 1.0 dB due to its proximity to the passband
edge. In contrast, when the signal was sent through the LiNbO3–based WSXC, the PDL varied
within the range of 4.0-5.5 dB across the waveband. The amount of PDL experienced by each
sub-channel was a function of the launch polarization orientation.

Ensuring that the sub-channels of a waveband maintain the same amplitude is important for
minimizing the waveband transmission penalty. Over longer spans and multiple hops through
optical networks, the amount of PDL through a network element should be kept to a minimum
especially since it can coupled with second order PMD (which introduces wavelength dependent
depolarization [4]) to cause additional variation in the sub-channel amplitudes.

Conclusion
 Wavebanding is a technique that can be applied to existing transparent optical elements to
increase the spectral efficiency within a passband without requiring costly impairment
compensation or upgrades to photonic cross-connects. It can also be applied to new network
designs in order to minimize the number of switch fabric ports. We have demonstrated 4-
channel waveband transmission over 100 km of legacy fiber in ATDnet within a 200 GHz
optical passband with aggregate capacities of 10 and 40 Gb/s. Understanding the impact of
impairments and optical nonlinearities that may affect the individual sub-channels of a waveband
is important for determining the ultimate reach, capacity, and channel spacing that can be
achieved within a passband of existing networks and fiber infrastructure.
 This work has been supported in part by the LTS and also by DARPA under contract
F30602-00-C-0167. The authors gratefully acknowledge Matthew Goodman of Telcordia
Technologies and Scott McNown of the LTS for valuable technical discussions and support.

279

References

[1] L. Noirie, M. Vigoureux, and E. Dotaro, OFC 2001, paper TuG3, March 2001.
[2] R. Lingampalli and P. Vengalam, OFC 2002, paper ThP4, March 2002.
[3] W. T. Andersen, J. Jackel, G.-K. Chang, et al., J. Lightwav. Technol., vol. 18, no. 12, pp.
1988-2009, Dec. 2000.
[4] C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, J. Lightwav. Technol., vol. 6,
no. 7, pp. 1185-1190, July 1988.

280

Design and Implementation of Software for Assembly and Browsing of 3D Brain Atlases

Carl Gustafson1, Oleh Tretiak2, Louise Bertrand1 and Jonathan Nissanov1*

1Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia,
Pennsylvania, USA

2Department of Electrical and Computer Engineering, Drexel University, 3141 Chestnut Street, Philadelphia,

Pennsylvania, USA

Abstract:
Visualization software for three dimensional digital brain atlases present many challenges in
design and implementation. These challenges include the design of an effective human
interface, management of large data sets, display speed when slicing the data set for
viewing/browsing, and the display of delineated volumes of interest (VOI). We present a
software design, implementation and storage architecture that addresses these issues,
allowing the user to navigate through a reconstructed volume quickly and smoothly, with an
easy-to-use human interface. The software (MacOStat, for use with Macintosh OS) allows
the user to rapidly display slices of the digital atlas at any arbitrary slicing angle, complete
with delineated VOIs. The VOIs can be assigned colors of the user's choosing. The entire
atlas, or selected portions, may be resliced with slices stored as individual image files,
complete with delineations. These delineations may be transferred to corresponding sections
of experimental materials using our analysis program (Brain). The software may be obtained
from the laboratory's web site: http://www.neuroterrain.org

Keywords:
3D brain atlas, 3D reconstruction, 3D visualization

*Corresponding Author:
Tel: 1-215-991-8410; Fax: 1-215-843-9367

281

Introduction

Neuroanatomical atlases are widely used to guide delineation of stained sections, assist in
electrode placement, and aid in surgical planning. Numerous atlases are available [e.g. 1,2,3,4].
In general these atlases are made of a series of non-consecutive 2D images of stained sections
along with graphical outlines of standard nuclei and tracts; they are usually provided as printed
manuscripts. These atlases suffer two major deficiencies: they support only a limited number of
orientations—typically offering coronal, sagittal and horizontal views, often incomplete (for
example, in rodent atlases, the olfactory bulb is often not included in horizontal or sagittal
views)—and they are sparse with substantial gaps present between sections. Three-dimensional
digital atlases can overcome these deficits and a number are now available for the rat [5], human
[6,7], mouse [8], rhesus monkey [10], fly [11] and other species.

To make use of these digital atlases, visualization software is required. There are generalized
volume visualization applications available via both commercial (Voxblast [12], Amira [13] IDL
[14]) and public (Open Visualization Data Explorer [15]) licenses; however, these are not
particularly suitable for atlas display. While they do offer both voxel and vector display and do
support arbitrary plane of view, all necessities in this specific setting of 3D visualization, they
lack support for other important functions of atlases such as display of stereotaxic coordinates
display, and textual annotations. They also fail to provide a straightforward means of matching
experimental sections to equivalent atlas planes, natural navigational tools, or accommodation
for the large size typical of digital atlases. We designed an application (MacOStat) that
overcomes these deficits.

Design Considerations

The primary design consideration in developing MacOStat was usability. By this is meant both
an intuitive human interface, with directly manipulatable interface elements, and sufficient
processing speed to make live navigation possible. An intuitive interface is of critical
importance in any computer software but it is especially important in software attempting to map
three dimensional data into a two dimensional display space; the third dimension must be
handled in a consistent and predictable manner, and the available commands for manipulating
the display should be direct and obvious to the novice user. However, there is currently no
widely-accepted standard to handle these requirements. Most applications rely on a series of
orthogonal views showing the projection of the slicing plane on the volume, along with a view
normal to that plane [16]. This type of interface is conceptually simple - one can easily specify

282

the slice location. Unfortunately, live navigation using this interface is not easy — an obstacle to
useablity with this scheme is that manipulation is not direct — it is necessary to adjust settings in
several separate windows to navigate the atlas, while monitoring the result in yet another distinct
window.

Speed is the other side of the usability coin - as even moderate-resolution atlases are quite large
(a 17.9µm/pixel isotropic mouse brain atlas [9], without any delineation, can easily exceed
100MB), efficient processing is critical to providing a satisfactory user experience. It is difficult,
if not impossible, to accurately navigate through an atlas unless refresh rates are substantially
faster than a frame per second. Handling this massive amount of data, and selecting and
displaying individual slices quickly is a another primary challenge. In addition, both fine- and
coarse-grained movement is required - fine grained movement alone quickly becomes tedious
when traversing large distances, and coarse-grained control makes precise positioning
impossible.

To meet these criteria, we developed a system that eliminates the entire orthogonal-view
paradigm, relying instead on only showing a slice of the atlas for fine-grained navigation, and a
wire-frame representation of the slice’s location within the atlas’ bounding volume for coarse-
grained movement. These displays are directly manipulated - the user selects an action from a
toolbar, then clicks and drags the mouse over the display; the display moves in direct response to
the user. To support rapid display and efficient access to atlas data, we have developed a novel
data storage technique that is generally applicable to volume (voxel) data.

A second design consideration is an architecture that facilitates maintenance and enhancement. It
is inevitable that software applications will need fixes and additional features. This is especially
true in relatively new content domains, such as interactive digital atlases. Unless the basic
program architecture is initially well factored, and modular in nature, future attempts at
enhancements will result in increasing fragility, resulting in either costly redesign, or a
reluctance to add additional features.

To realize this goal, we use object-oriented design techniques, and a commercial application
framework, MacApp [17]. The framework uses a Model-View-Controller (M-V-C) design
pattern well-adapted to user-centric interface design, and is easily modifiable, via inheritance
techniques, to our content domain. Atlas data is abstracted into generic voxel maps, with
appropriate metadata handled by both customized framework and purpose-built classes, acted
upon by generic slicing classes. A hierarchy of command classes abstract user interactions.
Customization of framework view classes provides the display functionality. An additional

283

advantage of object-oriented design is that it facilitates reuse of existing code bases. In our case,
we have an image acquisition and analysis package (Brain [18]), developed in-house, that we use
for 2D delineation of the data sets used in atlas creation. Many of the classes related to the data
model in Brain have been reused in the development of the atlas browser. The reuse already
developed and debugged code greatly shortens the application development cycle.

System Overview

We use an M-V-C pattern for our system. All the data structures (the model) that comprise an
atlas (gray-scale data, delineation, size and calibration, metadata, etc.) are aggregated by a class
descended from the MacApp base class TDocument (Figure 1). The atlas is displayed (the view)
using classes derived from the MacApp base class TView (Figure 2). Finally, all interactions
with the user (the controller) are handled by derivatives of the base class TCommand (Figure 3).
Finally, we have developed an additional class hierarchy independent of the MacApp framework
used to handle data slicing for later display (Figure 3).

The Model

The atlas browser has two independent components — the program to construct atlas data files
from separate, pre-aligned frames (Gluclose), and the browser itself (MacOStat). To the greatest
extent possible, the two share the classes that implement the data model (the class hierarchy from
the atlas browser is shown in Figure 1). Both also share classes with our analysis package, Brain;
atlas data files are constructed from Brain image files, and the atlas browser must export resliced
images in Brain file format. This means that our root data model has two independent branches,
one for the atlas document and one for the image documents that can be matched to the atlas.
The document objects used to construct an atlas (not shown in Figure 1) contain additional data
elements beyond those required by the Brain application— for example, the position and
orientation of the image within atlas space. To accommodate this, we created a subclass of the
basic Brain document to hold orientation data. All document objects have methods to read and
write data files when appropriate; this allows us to use existing classes, and add additional
capabilities via inheritance. Part of the initialization for document classes usually includes the
creation of view objects to display the document’s data. Because this display is both not needed
and computationally expensive when constructing an atlas from images, we further subclass the
document to eliminate this view creation step.

In addition to the document classes based on code developed for Brain, we also have been able
to reuse classes developed to represent delineated regions of interest and calibration curves.

284

Added to this are 3D specific classes to represent both gray-scale and binary volume data (image
voxels and volumes of interest) and metadata, as well as various collection classes used to
manage these data objects, which were derived from framework collection classes.

The View

Previous work provided a view class that used an offscreen buffer for drawing; this class was
used to display individual image files opened for matching purposes. A similar class was
developed to handle display of the sliced atlas image. Additional classes were derived from
framework classes for tool and informational views, and so forth.

Most views are subclassed directly from the base framework view class, but some intermediate
classes are used, primarily in the views that can be manipulated via mouse (Figure 2). In
TMouseOrientableView, the code that responds to mouse actions resides in a superclass of the
final view objects, as all views that can be manipulated via mouse (wire frame coarse-
positioning and slice fine-positioning views) may then use common code.

Many views are designed to be embedded in other views, to control various aspects of view
behavior. For example, T3DBufferedView is the ultimate destination for sliced atlas images and
the associated sliced volumes of interest. It uses an offscreen image buffer to assemble the final
image prior to display. This view is nested into a view descended from TMouseOrientableView,
which controls responses to mouse movement. While it is possible to derive T3DBufferedView
from TVolumeView or TMouseOrientedView, we also allow multiple views to be nested in
TVolumeView - for example, it is possible to browse several different data sets, but keep all data
sets at the same exact slicing orientation. By separating the view classes, we can allow TVolume
view to handle both tracking and scrolling of the views, and transfer information to all instances
of the data model; the code to handle this if the hierarchies were combined would be
significantly more complex.

The Controller

A number of command classes were derived from the framework command hierarchy to
encapsulate user actions such as navigation and reslicing. One advantage to this structure is that
each command object contains the information needed to undo any actions; commands may be
placed on a stack for multiple levels of undo if desired. By supporting undo for almost all user
actions, the human interface becomes much more forgiving, allowing the user the confidence
that any mistakes can be recovered.

285

In addition to the suite of command classes, a set of classes used to reslice volume data was
created. In essence, there is one slicer class for each type of volume data (gray-scale and binary)
and display variant (8 or 32 bit pixels, for example). These slicers, which are persistent objects,
are controlled by the command objects spawned by the user’s actions. In this case, much of each
slicer’s code is independent of the other slicers in the suite, primarily for performance reasons -
the overhead of calling virtual functions (the basic mechanism allowing a subclass to provide
specialized behavior) is normally negligible, but in the tight loops used in slicing, it has the
potential to become significant.

File Structure

Atlas files are stored in a tagged format. Each data item in the file is preceded by a tag
identifying the data, and by a length field specifying how long the field is. This structure
provides several benefits; the first is position independence — each chunk of data is interpreted
independent of the data around it, and is not required to appear at a particular offset in the disk
file — it may be inserted anywhere in the file. The second advantage is that the file structure is
effectively separated from the program’s version. A file created by a later version of the atlas
construction software, Gluclose, may still be read and understood by an earlier version of
MacOStat, it simply skips unrecognized tags. This in turn means that development and
distribution of atlas construction and browsing software can proceed independently. A common
problem in many applications is the lack of forward file compatibility, this block structure
eliminates the problem in all except the most extreme cases, and thus allows the developers more
freedom in adding useful features.

Implementation Details

Data structures, either in the form of classes or other formalisms, make up the core of an
application. A well-designed data structure must model the reality being represented and must
provide a structure easily accessible to, and supportive of, the internal program code. Object-
oriented design methods (in which classes include both the data and the functions to manipulate
that data) are often used to meet these requirements. Good classes present an opaque interface to
the application allowing access to the data the instantiated objects maintain, while hiding the
actual implementational details from the application. This data hiding results in better
modularity, which allows future enhancements to be made without disrupting the existing the
program code.

Macrovoxels

286

As an example of the value of opaque data structures, let us first consider the method we use for
storing atlas image voxels. A typical method of organizing volume data is in the form of a
monolithic array of voxels; we do not use this structure for reasons that will be detailed later.
Instead, we group voxels into clusters we call macrovoxels, and organize these macrovoxels into
a structure we refer to as a voxel map (Listing 1, 2). To access an individual voxel, one requests
a specific macrovoxel by providing the voxel map with the macrovoxel’s address in atlas space,
and then requests the individual voxel by providing that voxel’s address to the macrovoxel. A
voxel value is returned. At no point does the voxel map need to understand how the individual
voxel data is stored, so macrovoxels supporting binary, 8, 12, 16 or wider bit data may be stored
in the voxel map. In practice, the voxel map’s client needs to know the bit dimensions of the
individual voxels, as it needs to set the correct pixels in the screen buffers for display, but no
other part of the application needs to be aware of this implementation detail.

We use the macrovoxel structure for both performance and storage considerations. Computer
memory and file systems are essentially one-dimensional systems, where the only access to an
individual data item is by some index from a defined location. Mapping multi-dimensional data
into memory is essentially an exercise in bookkeeping, however, locality of data is preserved
only along one dimension - if the voxel at [X,Y,Z] is adjacent to the voxel at [X+1,Y,Z], and the
maximum dimensions of the atlas are (m,n,o), then the distance to [X,Y,Z+1] is m x n voxels
away. This is an important consideration when accessing large data sets for two reasons. First,
modern processors use a cache to provide quick access to recently used data, and nearby data - a
fixed amount of data is moved into a cache (a cache line), on the first access, and after this, the
cached copy of the data is accessed, rather than the data in RAM. Cache memory access is much
faster. If the data to be accessed during slicing is localized, most of it can be loaded into cache,
and processing speed enhanced. If it isn’t cached, then the “cache hit rate” drops, and processing
slows down. Second, modern systems utilize a virtual memory manager (VMM), which trades
disk storage which is slow but capacious, for RAM memory, which is more limited in capacity
but much faster. When a particular memory location that has been paged to disk is required, the
VMM brings it into RAM memory. This is a slow process, and so it is desirable to minimize
these page loads.

The macrovoxel architecture reduces some of the drawbacks of large monolithic arrays. We
group nearby voxels into a chunk, typically 16 voxels on edge. These chunks are then arranged
into a structure we call a voxel map (Figure 4). The voxel map comprises the atlas data, and is
the only entity to which the document class needs to maintain a reference. By grouping voxels
into these macrovoxels, we now have a data block that is roughly the size of a VMM page, and

287

also fits into a small number of cache lines. Thus, any voxels (row, column, plane) that are
spatially adjacent are now also physically adjacent in memory, which improves memory access
performance. Consider an attempt to reslice an atlas: if the slicing plane is coincident with the
data set (i.e.. examining only a single plane of data in an array) then only the data to be
displayed, plus possibly a cache line and/or VMM page frame on either side of the data plane
need to be moved. In this case, slicing the monolithic array will be faster than a macrovoxel
array, as in the latter 16 planes (based on a 16-voxel on edge macrovoxel) will need to be moved.
If, however the slicing plane is perpendicular to the data set major axis (cuts across many array
planes), then given the nature of the array, much more data will need to be moved for the
monolithic array than for a macrovoxel array (Figure 5).

An additional advantage of the macrovoxel architecture is that it allows us to eliminate empty
voxels from storage. By empty voxels we mean those voxels that exist outside the contour of the
3D image we are representing. Biological images are rarely in the form of cubes or prisms, but
that is how most arrays (including macrovoxel arrays) represent data - this representation means
that location information may be computed given the three dimensions of the array, rather than
stored in some fashion. The result is a reasonably compact data representation. This fails,
however, if the object being represented deviates significantly from a prism. In our domain, brain
imaging, the subject matter more closely approaches an ovoid. This means that the voxels in the
corner of the atlas volume have no useful data in them. By breaking our atlas space up into
macrovoxels, we can identify macrovoxels that contain these empty voxels, and replace that
macrovoxel's entry in the volume map with a reference to a single empty or "white" macrovoxel.
This allows us to eliminate large amounts of empty space, resulting in a reduced disk and
memory footprint, with a savings of typically 30%. (Figure 6)

Slicing

The actual slicing (Listing 3) is handled by taking the corners of the virtual knife (the plane to be
displayed on screen), and converting from an atlas-based coordinate system, where the axis units
are arbitrarily defined relative to the atlas geometry, to a coordinate system where the units are
based on macrovoxel indexes. Atlas-based coordinates are centered in atlas space, which
facilitates the rotation and translation of the virtual knife, while macrovoxel-based coordinates
are based on the upper front left macrovoxel, to facilitate memory accesses. This conversion
results in the useful property that the macrovoxel containing any given voxel is specified by the
whole number portion of the voxel's coordinate. The fractional part is then scaled by the
macrovoxel size (usually 16 voxels) to give the exact voxel. This scaling thus allows voxel
address computation almost as efficiently as if a monolithic array were to be used.

288

Once this scaling is completed, we divide opposite edges of the virtual knife into segments
corresponding to one of the dimensions of the display space. From each of these segments, we
project transect vectors to the opposite side of the virtual knife, and divide these into segments
corresponding to the other dimension of display space. Each of these segments now can be
mapped directly to a voxel in our macrovoxel array, and the image buffer is populated by
iterating over the segments on the virtual knife (Figure 7).

Finally, we provide a class to specify the virtual knife location. Any changes to slicing angle or
position are forwarded to this class, to which the slicing classes refers. Using this mechanism,
the slicing classes need no knowledge of the basic document objects - they only need to know
about the data set to be sliced, the screen buffer the sliced image is written to, and the virtual
knife location.

Atlas construction

Atlas construction (via Gluclose) is essentially the reverse of atlas slicing. First, an array of
macrovoxels is created. Here, the entire array needs to be allocated, as the final population will
not be known until construction is complete. Each pre-aligned frame comprising the data set is
loaded, it's location in atlas space determined either by data included with that file or by it's
position in the list of frames, and it's pixels converted to voxels and written to the macrovoxel
collection. During this process, gray values are equalized or remapped based on any included
calibration curves. Once all frames have been loaded, the collection of macrovoxels is checked
for data content, and empty macrovoxels eliminated. The completed data set is then written to
disk. Delineations, in the form of outlines, are accumulated and handled in a similar fashion. The
final calibration curve, a table of VOI names and display data, and coordinate system
transformation data are also written to file.

Human Interface

The human interface of MacOStat provides the user with a view of the data set at the current
virtual knife position and any associated delineation, a schematic view of atlas space showing
the position of the virtual knife, and the necessary controls and menus to control the application
(Figures 8,9).

Using a control strip,(a utility window with icons representing commands) the user can switch
basic slicing axis or presentation: coronal, sagittal, or horizontal. Rotation and translation of the
virtual knife is also controlled by this strip.

289

Navigation through atlas space is done by translating and rotating the virtual knife. These actions
are carried out via mouse movements: The user selects the action desired from the navigation
control strip, then clicks and drags the mouse over either the view of the atlas slice, or over the
wire frame diagram of the virtual knife and atlas space. Dragging over the wire frame provides
coarse movement control, and the slice view provides fine movement control. In both cases, the
display content changes to provide direct feedback to the user.

In addition, the rotation and translation of the virtual knife is provided in the upper left corner of
the wire frame window. In addition, a set of text entry boxes are provided to allow the user to
specify these values numerically. Finally, a facility is provided to remember particular virtual
knife orientations, and recall them via a popup menu. These saved positions can may be written
to file, and loaded into memory.

Dragging the mouse over the atlas slice display itself also displays the X, Y and Z coordinates of
the mouse, expressed in atlas units. Data needed for conversion of atlas coordinates to
stereotaxic coordinates can be embedded in the atlas data files, and will be used if available. In
this case, the mouse pointer location is expressed in stereotaxic coordinates rather than the atlas-
relative coordinates.

Atlas data sets may also contain delineation data; this data is shown either as a colored outline on
the gray-scale image, or as a translucent colored area. Colors are user-selectable. In addition, the
user may turn the delineation display on or off, and may define a subset of individual structures
for display (Figure 9). Display lists complete with color specifications may be saved to a file,
and reloaded as desired. The file itself is in the form of tab-delimited text, and so may be viewed
and edited with standard word processing and spreadsheet applications. Each structure is
specified by both an abbreviation and a name.

Finally, it is possible to save sequential virtual slices to individual data files. To save these slices,
the starting and stopping positions are marked, and the number of slices and manner in which the
virtual knife position is interpolated is specified. For example, if the starting and stopping slices
are not parallel, one can specify that only the starting or stopping knife angle should be used, the
mean angle, or that the angle should be interpolated across the span. Using this facility, the user
can open individual experimental sections and match them to the 3D atlas to rapidly generate a
set of matching planes that can then be employed in delineation of the experimental data using
Brain.

290

Software Availability

The software (MacOStat) may be downloaded without fee from www.neuroterrain.org. It
requires MacOS 8.6 and CarbonLib 1.3 or later.

Acknowledgment

This work was supported by NIH award P20 MH62009 and US Air Force agreement F30602-00-
2-0501

291

References

[1] Franklin, B. J. Keith, G. Paxinos, The Mouse Brain in Stereotaxic Coordinates.
Academic Press, San Diego, California 1997

[2] Paxinos, G., C. Watson, The Rat Brain in Stereotaxic Coordinates. Academic Press,
San Diego, California 1998

[3] Swanson, L. W., Brain Maps: Structure of the Rat Brain. Elsevier, Amsterdam,
Netherlands, 1992

[4] Mai, J. K., Assheuer, J., G. Paxinos, Atlas of the Human Brain. Academic Press,
San Diego, California 1997

[5] Toga, A. W., E. M. Santori, R. Hazani, K. Ambach. Rat Atlas Image Database,
http://www.loni.ucla.edu/Research_Loni/atlases/rat/

[6] Sundsten, J W. Digital Anatomist: Interactive Brain Atlas,
http://www9.biostr.washington.edu/da.html

[7] Kikinis, R. A DIGITAL BRAIN ATLAS FOR SURGICAL PLANNING, MODEL
DRIVEN SEGMENTATION AND TEACHING,
http://www.spl.harvard.edu:8000/pages/papers/atlas/text.html

[8] Sidman, R. L., B. Kosaras, B. Misra, S. Senft. High Resolution Mouse Brain Atlas,
http://www.hms.harvard.edu/research/brain/

[9] Bertrand, L., J. Nissanov, 3D Atlas of the Mouse Brain, Computer Vision
Laboratory for Vertebrate Brain Mapping, Philadelphia, 2001.
http://www.neuroterrain.org/

[10] Jones, E G. et al, (Resus atlas) UC Davis/UC San Diego Human Brain Project,
http://neuroscience.ucdavis.edu/hbp/project2.html

[11] Flybrain, http://flybrain.neurobio.arizona.edu/Flybrain/html/

[12] VoxBlast http://www.vaytek.com/VoxBlast.html (commercial)

[13] Amira -- visualization and reconstruction for 3D image data.
http://www.amiravis.com (Commercial)

[14] IDL -- data analysis, visualization and application development.
http://www.rsinc.com/ (Commercial)

[15] Open Visualization Data Explorer -- an application and development software
package for visualizing 2D/3D data. http://www.research.ibm.com/dx/ (IBM Public
License)

292

[16] Lohmann, K., Gundelfinger, E. D., Scheich, H., Grimm, R., Tischmeyer, W.,
Richter, K., Hess, A. (1998) BrainView: a computer program for reconstruction and
interactive visualization of 3D data sets. J Neurosci Methods 84(1-2) 143-154.

[17] Apple Computer, Inc., MacApp, http://developer.apple.com/tools/macapp/

[18] Nissanov, J., D.L. McEachron. 1991. Advances in image processing for
autoradiography. J. Chem. Neuroanat. 4:329-342.

293

CARDIOMYOCYTE-MEDIATED CONTACT PROGRAMS HUMAN
MESENCHYMAL STEM CELLS TO EXPRESS CARDIOGENIC PHENOTYPE

Sunil Rangappa, M.D.

John W.C. Entwistle, Ph.D., M.D.

Andrew S Wechsler, M.D.

J. Yasha Kresh, Ph.D.

Department of Cardiovascular Medicine & Surgery, Drexel University College of
Medicine, Philadelphia, PA

Address correspondence to:

J. Yasha Kresh, Ph.D.
Dept. of Cardiovascular Medicine and Surgery
Mail Stop 111, 245 North 15th. Street
Drexel University College of Medicine
Philadelphia, PA 19102

Abstract was accepted for oral presentation at the American Heart Association’s
Scientific Sessions, Chicago, Illinois, November 17-20, 2002.

294

Acknowledgment:

This study was supported in part by State of Pennsylvania (#11700014), Defense

Advanced Research Agency (DARPA), and Grant-in-Aid from Cardiovascular

Institute of Philadelphia, PA.

295

Abstract:

Background: Intercellular cross talk and cellular plasticity are key factors in

embryogenesis and organogenesis. The microenvironment plays a critical role in

directing the progression of stem cells into differentiated cells. We hypothesized

that intercellular interaction between adult human mesenchymal stem cells

(hMSC) and adult human cardiomyocytes would induce stem cells to acquire the

phenotypical characteristics of cardiomyocytes, and tested the role that direct

cell-to-cell contact plays in directing this differentiation process. hMSCs were

cultured in the presence of human cardiomyocytes (“co-culture”), or in the

presence of media conditioned by separate cultures of human cardiomyocytes

(“conditioned media”).

Methods: Human cardiomyocytes were labeled with chloromethyl derivatives of

fluorescein diacetate (CMFDA). In the co-culture experiments, hMSCs and

human cardiomyocytes were mixed at a 1:1 ratio in Sm2 media and seeded at

cell density of 10000 cells/cm2. Cells were co-cultured in an incubator at 370C for

48 hrs. Subsequently, Fluorescence Activated Cell Sorting (FACS) was used to

extract the differentiating hMSCs. In the conditioned media experiments, hMSCs

were incubated in media previously conditioned by cardiomyocytes, in the

presence and absence of serum (± serum). The conditioned media was changed

3 times, at intervals of 48 hours. Total RNA was isolated and RT-PCR was

performed for expression of contractile proteins and cardiac specific genes.

Immunostaining against myosin heavy chain, β-actin troponin-T and Troponin-I

was performed.

Results: FACS analysis identified 66% of the hMSCs in the G1 phase.

Differentiated hMSCs from the co-culture experiments expressed the mRNAs

encoding myosin heavy chain, β-actin, and Troponin-T. Immunostaining was also

positive against myosin heavy chain and troponin-T. In contrast, only β-actin

expression was observed in the hMSC incubated with conditioned media ±

serum.

296

Conclusion: In addition to soluble signaling molecules, direct cell-to-cell contact is

obligatory in relaying the external cues of the microenvironment controlling the

differentiation of adult stem cells to cardiomyocytes. These data indicate that

hMSCs are plastic and can be reprogrammed into a cardiomyogenic lineage that

may be used in cell-based therapy for treating of heart failure.

297

Introduction:
Cell transplantation is being explored as an alternative therapy for treating

patients with end stage heart failure. Fetal cardiomyocytes (1,2), skeletal

myoblasts (3,4,5), immortalized cell lines (6), fibroblasts (7), smooth muscle cells

(8) and hematopoietic stem cells (9) have been transplanted into host

myocardium. While this implantation was associated with improved cardiac

function (10,11), evidence for normal electromechanical coupling between the

implanted cells and host cardiomyocytes has been absent. All reported

techniques of cellular cardiomyoplasty (CCM) have limitations and shortcomings,

and these depend primarily upon the type of cell used for transplantation. Ideally,

cells for use in CCM should be pluripotent, possess the capacity to differentiate

to the desired cell type under appropriate stimuli, have a limited capacity to

multiply, and should be capable of functional integration into the host

myocardium.

The adult human mesenchymal stem cell (hMSC) has many of these

characteristics, and as such may be highly suitable for CCM. Under appropriate

stimuli these stem cells are highly plastic (12) and can differentiate into

specialized tissues such as cartilage (13), osteocytes (14), adipocytes (15),

chondroblasts (16), myogenic cells (17) and cardiac cells (18). Mesenchymal

stem cells treated with azacytidine transdifferentiate into a cardiac phenotype in

vitro (19). Moreover these stem cells can also differentiate into cardiomyocytes

when injected into normal or acutely injured myocardium. However, the signals

that are crucial for cardiac specific lineage are not well known. In order to

improve the clinical utility of cell based therapy, the signaling pathways that

induce the transformation of stem cells into cardiomyocytes need to be identified

to help achieve successful engraftment.

Potential signals that direct stem cells to differentiate into cardiomyocytes

include chemical (soluble) and mechanical (physical) factors. Stem cells

differentiate into mature cells based on the signals from the microenvironment.

The objective of our study was to determine if the signals that are produced by

mature cardiomyocytes are sufficient to induce stem cells to differentiate into

298

cardiomyocytes, and if both physical contact and soluble factors are required for

this process.

299

Material and Methods:
 Three experimental groups of cell cultures were used to study the effects

of soluble and mechanical factors on the transformation of stem cells into

cardiomyocytes. In Group 1 (Figure 1a), adult human cardiomyocytes were

cultured alone In Group 2, (Figure 1b) hMSCs were cultured in media that had

been conditioned by separate cultures of cardiomyocytes (“conditioned media”).

In Group 3 (Figure 1a), stem cells and cardiomyocytes were cultured together

(“co-culture”). In each group, cells were studied for the expression of cardiac-

specific genes.

Culture of human mesenchymal stem cells:

Human mesenchymal stem cells were obtained from a commercial source

(Biowhittaker Molecular Applications/Cambrex Inc, East Rutherford, NJ). The cells

were originally isolated from the bone marrow of the posterior iliac crest of the pelvic

bone of normal healthy volunteers and were positive for SH2, SH3, SH4, CD29 and

CD44 and negative for CD14, CD 34 and CD45 as determined by flow cytometric

analysis of surface antigens markers. These hMSCs were grown in human

mesenchymal stem cell medium (HMSCM) containing 440 ml of basal medium, 50 ml

of mesenchymal growth supplements (10% FBS), 200 mM of L-Glutamine, 25 units of

penicillin and 25 µg of streptomycin at 370C in a CO2 incubator. At 80% confluence the

hMSCs were split and subcultured.

Culture of human cardiomyocytes:
Cultured human cardiomyocytes were obtained from BioWhittaker Inc. The

cardiomyocytes were grown in smooth muscle cell media containing 500 ml of smooth

cell basal medium (SmBM) 0.5 mg/ml of hEGF, 5 mg/ml of insulin, 1 mg/ml of hFGF,

50 mg/ml gentamicin, 50 mg/ml of Amphotercin B and 5% fetal bovine serum.

Preparation of conditioned media:
The cardiomyocytes were cultured in T-25 cm2 flask with 5 ml of Sm2 media for

48 hours. The resulting “conditioned media” was replaced with equal volume of fresh

300

media. Subsequently, the conditioned media was filtered using a 0.22 µm filter and

used to feed cultures of hMSCs.

Fluorescent staining of the human cardiomyocytes:

Prior to co-culturing cardiomyocytes with hMSCs, cardiomyocytes were

labeled with green-fluorescent fluorescein diacetate (CMFDA, CellTracker,

Molecular Probes Inc., Eugene OR) and sorted using fluorescent activated cell

sorting (FACS). CMFDA is a fluorescent chloromethyl derivative that freely

diffuses through the membranes of live cells. Once inside the cell, this mildly

thiol-reactive probe undergoes a glutathione S-transferase–mediated reaction to

produce a membrane-impermeant glutathione–fluorescent dye adduct. Briefly,

CMFDA was mixed with prewarmed (370C) serum free Sm2 media to a final

concentration of 10 µM. This concentration of probe was determined to be

optimal for staining of cardiomyocytes using serial dilutions. The cardiomyoctes

were incubated with the probe for 45 minutes at room temperature. The media

was subsequently replaced with fresh serum free media and incubated for

another 45 minutes to ensure complete modification of the probe and then the

cells were washed with PBS to remove the excess fluorescent label.

Co-culture of human cardiomyocytes and hMSCs:
Labeled human cardiomyocytes and hMSCs were mixed at a ratio of 1:1 in Sm2

media, plated at a density of 10000 cells/cm2 and incubated in a CO2 incubator at 370C

for 48 hours. At the end of the experiment the cells were washed with PBS 3 times and

0.25% trypsin was added to detach the cells from the surface. Cardiomyocytes and

treated hMSCs were separated using FACS prior to analysis.

Culture of hMSCs with conditioned media:
Media conditioned by cultures of human cardiomycoytes was filtered using a

0.22 µm filter. Conditioned media (5 ml) was used to feed hMSC cultures for 48 hours,

at which time the media was replaced with fresh conditioned media. The media was

changed a total of 3 times at 48-hour intervals. Duplicate experiments were conducted

301

in which 10% serum was added to the conditioned media prior feeding the hMSCs. At

the end of the experiment the cells were washed with PBS 3 times and 0.25% trypsin

was added to detach the cells from the surface.

Fluorescent activated cell sorting:
After 48 hours of coculture, the differentiated hMSCs and the human

cardiomyocytes were trypsinized and centrifuged at 700 rpm for 5 minutes. The cell

pellet was suspended in 5 ml of PBS and the hMSCs were sorted and segregated at

488 nm optical filter. The hMSCs were collected and centrifuged at 500g for 10

minutes and processed later.

Total RNA extraction, reverse transcriptase-PCR:
Total RNA was extracted from untreated hMSCs (negative control), differentiated

hMSCs and human cardiomyocytes (positive control) using an RNeasy Mini

isolation kit (Qiagen Inc, Alameda CA). RT-PCR was performed to detect

expression of myosin heavy chain, β-actin, troponin-T and Troponin-I using

specific primers and Superscript One-Step RT-PCR (Invitrogen, Carlsbad CA) for

cDNA synthesis. Pre-denaturation was performed at 500C for 30 minutes and

940C for 2 minutes. PCR amplification was carried out at 940C for 30 sec, 600C

for 30 sec and 720C for 30 sec for a total of 35 cycles and final extension of 1

cycle at 940C for 7 minutes. The PCR products were size fractionated by 0.7%

SeaKem GTG agarose gel electrophoresis. The following primers were used:

Myosin heavy chain 5’-GGAGGAGGACAGGAAAAACCT-3’ (forward), 5’-

CGGCTTCAAGGAAAATTGC-3’ (reverse), Troponin-T 5’-

GGCAGCGGAAGAGGATGCTGAA-3’ (forward), 5’-

GAGGCACCAAGTTGGGCATGAACGA-3’ (reverse), β-actin 5’-

302

CGCACCACTGGCATTGTCAT-3’ (forward), 5’-TTCTCCTTGATGTCACGCAC-3’

(reverse) and Troponin-I 5’-CCCTGCACCQGCCCCAATCAGA-3’ (forward), 5’-

CGAAGCCCAGCCCGGTCAACT-3’ (reverse) . Similarly, RT-PCR was

performed for expression of the various connexins in the hMSC using specific

primers as follows Cx-45 5’-CTATGCAATGCGCTGGAAACAACA-3’ (forward) 5’-

CCCTGATTTGCTACTGGCAGT -3’ (reverse), Cx-40 5’

ATGCACTGTGCGCATGCAGGA-3’ (forward),5’-

CAGGTGGTAGTGTTCAGCCAG-3’ (reverse), Cx-32 5’-

CTGCTCTACCCGGGCTATGC-3’ (forward), 5’-CTGCTCTACCCGGGCTATGC-

3’ (reverse), Cx-26 5’-CCGAAGTTCATGAAGGGAGAGAT-3’ (forward), 5’-

GGTCTTTTGGACTTCCCTGAGCA-3’ (reverse), CX-43 5’-

GAATTCTGGTTATCATCGTCGGGGAA-3’ (forward), 5’-

TACCATGCGACCAGTGGTGCGCT-3’ (reverse)

Immunostaining:

The differentiated hMSCs were sorted by FACS and cytospined onto slides. The

cells were fixed with acetone/methanol 50%/50% vol/vol for 5 minutes at room

temperature and repeated twice. The slides were air dried overnight and bathed in 2 ml

of PBS for 10 min. The slides were incubated with monoclonal IgG primary antibody for

45 minutes at room temperature. Primary antibodies were specific for β-Myosin Heavy

Chain (MyHC) (A4.1025, 1:10 DHSB, University of Iowa), Sarcomeric Myosin (MF-20,

1:100 DHSB, University of Iowa), Cardiac Troponin-T (CT-3 1:100 DHSB, University of

Iowa) and Troponin-I. The cells were washed with PBS and then incubated with

secondary antibody (FITC-conjugated Affinipure goat anti-mouse IgG) diluted 1:200 for

303

45 minutes at room temperature. Fluorescence imaging was performed using Olympus

AX-70 microscope and Open Labs Software.

304

Results:
When initially plated, adult human mesenchymal stem cells appeared

rounded in shape. After 24 hours after plating, the cells were adherent, elongated

and spindle-shaped (Fig 2a). During mitosis the cells regained a rounded

appearance and remained loosely attached until division was complete. At this

phase of the cell cycle the cells flattened and elongated. The hMSCs were

subcultured when they reach 70-80% confluence.

The cardiomyocytes had a rod-shaped morphology and were arranged in

a syncytial fashion as shown (Fig 2b). Their particular phenotype lineage was

established by immunostaining against myosin heavy chain and troponin-T.

Human cardiomyocytes stained 100% with CMFDA

FACS analysis of the hMSC determined that 66% of the cells were in G1

phase. The remaining cells were in S phase (21%), and G2 phase (13%).

In the co-culture experiments, immunohistochemistry revealed an absence

of staining for fast myosin (MF-1) in both cultured cardiomyocytes (Fig 3a) and

transformed hMSCs (Fig 3b), and positive staining against sarcomeric myosin

(MF-20), β-myosin heavy chain (MyHC), and troponin-T (CT-3) in

cardiomyocytes (Fig 3c, e and g, respectively) and in transformed hMSCs (Fig

3d, f and h, respectively). There was no staining against Troponin-I protein at 2

days of co-culture (Fig.3h). In addition, RT-PCR revealed the expression of

myosin heavy chain, β-actin and cardiac troponin-T in cell-to-cell contact co-

culture (Fig 4). Untreated hMSCs and human cardiomyocytes were used as

negative and positive controls, respectively. In the conditioned media

experiments, β-actin expression was noted in the hMSCs exposed to

cardiomyocyte-conditioned media, both in the presence and absence of serum.

There was no expression of the β-myosin heavy chain, troponin-I or troponin-T in

hMSCs treated with the conditioned media (Table I).

Importantly, the expression of gap junction proteins (Cx 40, Cx-43, Cx-45,

Cx-32) was identified in untreated cultured hMSCs. This finding is particularly

encouraging since gap-junctions are critical to establishment of cell-to-cell

electrochemical coupling (Fig 5).

305

Discussion:
These studies demonstrate that adult human mesenchymal stem cells

have the potential to differentiate into cardiomyocytes under the appropriate

microenvironment. Under co-culture conditions, when there was direct contact

between cardiomyocytes and hMSCs, the hMSCs begin to express the cardiac-

specific proteins myosin heavy chain, beta-actin and troponin-T. Most

importantly, only β-actin was expressed when the hMSCs were cultured with

conditioned media, either in the presence or absence of serum, when there was

no physical contact between the cardiomyocytes and hMSCs.

Elements of the microenvironment provide the critical signals to direct and

control differentiation of human mesenchymal stem cells to a cardiac lineage.

The potential factors involved are numerous, but may be broadly characterized

as either chemical (soluble) or physical (mechanical). In these experiments, we

demonstrated that the soluble factors alone were not sufficient to induce

differentiation of hMSCs into cardiomyocytes, and that physical contact between

the cardiomyocytes and hMSCs is necessary under these conditions. However,

the cell density may be critically important since the expression of cardiac

specific proteins occurred when cardiomyocytes and hMSCs were co-cultured at

1:1 ratio, but were not seen at other plating ratios in preliminary work performed

in our lab.
During embryogenesis, stem cells differentiate to form the cells that

comprise the developing organs and tissues. In the adult, some tissues are able

to regenerate lost or damaged cells through the differentiation of progenitor cells

or additional stem cells. However, cardiomyocytes are not readily replaced with

contractile cells when they are lost as a result of myocardial infarction.

Cardiomyocytes are in a dormant phase of the cardiac cycle, and do not undergo

cellular division. However, the hMSCs progress through the cell cycle and are

capable of cellular division. The observation that 66% of the hMSCs were in G1

phase of the cell cycle suggests that prolongation of this phase could play an

306

important role in directing hMSC commitment. Since cardiomyocytes are

incapable of division, and no readily available source of replacement cells exist,

lost cells are partially replaced with scar tissue, while neighboring

cardiomyocytes hypertrophy in an effort to restore cardiac function. There is no

clear understanding why stem cells that are capable of producing

cardiomyocytes in the embryo are incapable of such a task in the adult heart.

Recent evidence demonstrates that such replacement may occur to a small

degree, but that the rate may be too slow to be functionally significant (20). The

purpose of these experiments was to try to elucidate some of the signals that are

involved in the differentiation of mesenchymal stem cells into cardiomyocytes.

Through a clear understanding of these processes, we may be able to

manipulate stem cells such that they may be the ideal source of cells for cellular

cardiomyoplasty, or that we may be able to direct them migrate to the

myocardium to replenish cardiomyocytes at a rate that can be clinically useful..

Previous work has demonstrated the ability of stem cells to undergo

differentiation into cardiomyocytes, but these studies have not examined the

mechanisms of the differentiation process. It is clear that the microenvironment of

the cells is an important component of this process. If stem cells are implanted

into myocardial scar, they differentiate into a variety of non-myocyte cell types

(21), reflecting the prevailing influence of the myocardial microenvironment.

Conversely, if stem cells are implanted into an “optimally” permissive

microenvironment, they may selectively differentiate into cardiomyocytes. Stem

cells may also be used to repopulate the heart without direct injection into the

myocardium. In mice that have undergone bone marrow transplantation and

subsequent regional myocardial infarction, marrow-derived cardiomyocytes and

endothelial cells have been found in the peri-infarct region (9). Finally, host-

derived cardiomyocytes have been located in small numbers in transplanted

human hearts that have been later excised (22). These data demonstrate both

the ability of adult mesenchymal stem cells to differentiate into cardiomyocytes

under the proper conditions, and also reflect the pluripotent nature of these stem

cells in that they also can form the supporting structures of the heart. Finally,

307

stem cell-derived cardiomyocytes have only been located in hearts subjected to

injury, and not under normal conditions. This suggests that the microenvironment

of the stem cell is critical in permitting the process differentiation, and that the

stem cells are responding to some factor(s), either chemical or mechanical, are

active during these periods of stress or injury.

The processes that regulate cell differentiation are complex, and the

interactions between signals are largely unknown. However, it is clear that the

microenvironment of the developing cell plays a critical role in determining its

ultimate fate. The components of the microenvironment that influence cellular

differentiation can be broadly classified as either chemical or physical

(mechanical). The chemical signals include cytokines, hormones, ionic gradients,

and other soluble factors that are produced by either neighboring or distant cells.

The mechanical factors can be equally complex, and may include stimulation of

receptors through direct contact with neighboring cells or by the components of

the extracellular matrix (ECM), the influences of cell stretch or other forces, the

electrical environment of the cells, and perhaps even other signals.

Co-culture and conditioned media techniques provide an excellent model

to study the signals that influence cellular development and differentiation.

Through the use of co-culture techniques, stem cells are exposed to many of the

physical and chemical signals that are present within the native myocardium,

particularly the mechanical signals that are produced through direct cell-to-cell

contact between the cardiomyocytes and hMSCs. In contrast, the experiments

that use conditioned media provide the soluble factors that are elaborated form

the cardiomyocytes without allowing direct cell-to-cell contact, thus separating

the effects of the chemical stimuli from the physical. While the conditioned media

contains cytokines and other soluble elements that are elaborated from the

cardiomyocytes during normal growth, these are not sufficient to stimulate the

stem cells to differentiate into cardiomyocytes. In the conditioned media

experiments, the signals that are related to direct contact between the cell types

are lacking. This suggests that the cell-to-cell contact that is possible between

308

cardiomyocytes and hMSCs in the co-culture scenario is critical in the

differentiation process.

Cell-cell interaction is a complex phenomenon, which involves contact

between cells through junctional complexes including tight junctions,

desmosomes and gap junctions. For this reason, it is important that the

transformed stem cells are capable of expressing the connexins that are critical

in the formation of gap junctions. The expression of the gap junction proteins

seen in the untreated hMSCs is critical for the complete expression of cardiac

phenotype and functional integration into the host tissue. These proteins may be

involved in the signal transduction that occurs between the hMSCs and

cardiomyocytes during the co-culture experiments. Perhaps the connexins have

been arranged into dormant channels that open with cell-to-cell contact and aid

in the transfer of intracellular signaling molecules.

Cell contact can also result in changes in cell shape due to mechanical

stretch imposed by neighboring cells. In addition, homology of cell surface

receptors and other proteins involved in cell-cell adhesion between the

cardiomyocytes and stem cells could activate the differentiation-associated

genes and alter the genotype and phenotype. The intracellular signal

transduction pathways may be triggered by transmembrane receptors such as

epidermal growth factor; platelet-derived growth factor via autophosphorylation

and by binding with ligands that regulate the transmission of MAP kinase

signaling pathway or activation of protein kinase C pathway via hydrolysis of

phosphoinositol.

Evaluation of the factors required to promote stem cell differentiation is

critical in refining the techniques of cellular cardiomyoplasty. Current techniques

are inadequate to produce a clinically significant increase in cardiac function for a

variety of reasons. When skeletal myoblasts or other non-cardiomyocytes are

used, there is not complete electromechanical integration of the implanted cells

with the native cardiomyocytes. While there may be a concomitant improvement

in cardiac function, this is likely due to changes in the diastolic properties of the

ventricle. As such, maximal benefit can only be obtained if the transplanted cells

309

have the capacity to differentiate into cardiomyocytes that can fully integrate into

the myocardium. Another concern with the current techniques of CCM is the low

rate of integration of implanted cells. Only a small fraction of the implanted stem

cells remain viable in the myocardium after CCM, limiting the therapeutic benefit

of this technique using current methods.

If the signals that are involved in the transformation of stem cells into

cardiomyocytes can be understood, then the rate of functional integration of

these cells, and thus the success of CCM, can be improved significantly. Since

these results suggest that mechanical factors are important in the transformation

process, then it is possible that stem cells can be pretreated in vitro in an

environment that mimics many of these conditions prior to implantation. By doing

this, it may be possible to commit the stem cells to a cardiomyocytes lineage

prior to implantation to increase the therapeutic yield of CCM.

Limitations of This Study:

These studies were conducted using an in vitro controlled

microenvironment and observed for relatively short period of time (48 hours).

While several myogenic markers were expressed in the stem cells subjected to

co-culture, β-myosin heavy chain, β-actin, troponin-T are also expressed to

varying degrees by skeletal muscle cells. In addition, troponin-I was not seen in

the treated stem cells. However, the time frame of the study was relatively short,

and it may take upwards of seven days before troponin-I expression may be

detectable in transforming cells. Future studies will need to look at this

phenomenon a longer time points in order to see the expression of other cardiac

proteins. In addition, it is anticipated that electromechanical integration of the

hMSCs with the cultured cardiomyocytes will also occur as a late finding, if the

cell cultures can be maintained long enough.

Cell fusion (23) between the cardiomyocytes and hMSCs remains a

concern when interpreting these observations and those of related studies of

gene expression in differentiating stem cells. The fact that Troponin-I expression

was selectively absent from co-cultured hMSCs demonstrates that fusion is not

310

responsible for the findings. A related issue is the chance that separation of the

cardiomyocytes and hMSCs was not complete, and that RT-PCR amplified

genes from the cardiomyocytes that contaminated the hMSC cell population. If

this were to have occurred, then the RNA encoding troponin-I would have been

seen in the stem cells subjected to co-culture.

Conclusion:
In addition to soluble signaling molecules, direct cell-to-cell contact is

obligatory in relaying the external cues of the microenvironment controlling the

differentiation of adult stem cells to cardiomyocytes. These data indicate that

hMSCs are plastic and can be reprogrammed into a cardiomyogenic lineage that

may be used in cell-based therapy for treating of heart failure.

311

References:

1. Soonpaa MH, Koh GY, Klug MG, Field LJ. Formation of nascent intercalated

discs between the grafted fetal cardiomyocytes and host myocardium. Science

1994; 264:98-101.

2. Reinecke H, Zhang M, Bartosek T, Murry CE. Survival, integration, and

differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts.

Circulation 1999; 100(2): 193-202.

3. Chiu RCJ, Zibaitis A, Kao RL. Cellular Cardiomyoplasty: myocardial

regeneration with satellite cell implantation. Ann Thorac Surg 1995; 60 (1):12-15

4. Atkins BZ, Lewis CW, Kraus WE, Hutcheson KA, Glower DD, Taylor DA.

Intracardiac transplantation of skeletal myoblasts yields two populations of

striated cells in situ. Annals of Thoracic Surgery. 1999; 67(1): 124-9.

5. Taylor DA. Atkins BZ. Hungspreugs P. Jones TR. Reedy MC. Hutcheson KA.

Glower DD. Kraus WE. Regenerating functional myocardium: improved

performance after skeletal myoblast transplantation [published erratum appears

in Nat Med 1998; 4(10): 1200]. Nature Medicine. 1998; 4(8): 929-33.

6. Koh GY. Soonpaa MH. Klug MG. Field LJ. Long-term survival of AT-1

cardiomyocyte grafts in syngeneic myocardium. American Journal of

Physiology. 1993; 264(5 Pt 2): H1727-33.

7. Sakai T, Li RK, Weisel RD, Mickle DA, Kim EJ, Tomita S, Jia ZQ, Yau TM.

Autologous heart cell transplantation improves cardiac function after myocardial

injury. Ann Thorac Surg. 1999; 68(6): 2074-80; discussion 2080-1.

8. Yoo KJ, Li RK, Weisel RD, Mickle DA, Li G, Yau TM. Autologous smooth

muscle cell transplantation improved heart function in dilated cardiomyopathy.

Ann Thorac Surg. 2000; 70(3): 859-65.

9. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW,

Entman ML, Michael LH, Hirschi KK, Goodell MA. Regeneration of

ischemic cardiac muscle and vascular endothelium by adult stem cells. J

Clin Invest. 2001 Jun;107(11):1395-402.

312

10. Li RK, Mickle DAG, Weisel RD, Zhang J, Mohabeer MK. In vivo survival

and function of transplanted rat cardiomyocytes. Circ Res 1996; 78: 283-

288

11. Scorsin M, Hagege AA, Dolizy I, Marotte F, Mirochnik N, Copin H.

Barnoux M. le Bert M. Samuel JL. Rappaport L. Menasche P. Can cellular

transplantation improves function in doxorubicin-induced heart failure?

Circulation.1998; 98 (19 Suppl):II151-5; discussion II-155-6.

12. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Robin Douglas, Mosca JD,

Moorman MA, Simonetti DW, Stewart Craig, Marshak DR. Multilineage potential

of adult human mesenchymal stem cells. Science 1999; 284:143-147

13. Ashton B.A, Allen TD, Howlett CR, Eaglesom CL, Hattori A, Owen M. Formation

of bone and cartilage by marrow stromal cells in diffusion chambers in vivo.

Clinical. Orthopedics. 1980; 151:294-307.

14. Richard, DJ, Sullivan, TA Shenker, BJ Leboy PS, Kazhdan I. Induction of rapid

osteoblast differentiation in rat bone marrow stromal cells cultures by

dexamethasone and BMP-2. Dev Bio 1994; 161: 218-228

15. Umezawa A, Maruyama T, Segawak K, Shadduck RK, Waheed A, Hata J.

Multipotent marrow stromal cell line is able to induce hematopoiesis in vivo. J

Cell. Physiol 1992; 151: 197-205

16. Howlett CR, Cave J, Williamson M, Farmer J, Ali SY, Owen ME. Mineralisation

in vitro cultures of rabbit marrow stromal cells. Clinical orthopaedic Related

Research 1986; (213): 251-263

17. Ferrari G, Angelis GC, Colletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio

F. Muscle regeneration by bone marrow derived myogenic progenitors. Science

1998; 279: 1528-1530

18. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal

stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.

Circulation. 2002 Jan 1;105(1):93-8.

19. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M,

Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S. Cardiomyocytes

313

can be generated from marrow stromal cells in vitro. Journal of Clinical

Investigation. 1999; 103(5): 697-705.

20. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-

Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P. Evidence that human

cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001 Jun

7;344(23):1750-7.

21. Wang JS, Shum-Tim D, Chedrawy E, Chiu RC. The coronary delivery of marrow

stromal cells for myocardial regeneration: pathophysiologic and therapeutic

implications. J Thorac Cardiovasc Surg. 2001 Oct;122(4):699-705

22. Laflamme MA, Myerson D, Saffitz JE, Murry CE. Evidence for cardiomyocyte

repopulation by extracardiac progenitors in transplanted human hearts.

Evidence for cardiomyocyte repopulation by extracardiac progenitors in

transplanted human hearts. Circ Res. 2002 Apr 5;90(6):634-40.

23. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM,

Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of

other cells by spontaneous cell fusion. Nature. 2002 Apr 4;416(6880):542-5.

314

Figure 1a

Figure 1b:

315

Figure 2:

Figure 3:

b

d c

f e

h g

a

a b

i j

316

Figure 4

317

Figure 5

318

TableI:

Table II:

319

Figure 1:
Figure 1a:
Group I cardiomyocytes grown in the tissue culture plates
Group II Conditioned media prepared from the cardiomyocytes after 48 hours in culture
Group III Coculture of hMSC with cardiomyocytes.

Figure 1b:
Conditioned media prepared from the soluble factors released from the cardiomyocytes,
in which hMSC were subsequently cultured.

Figure 2:
Figure2a Spindle shaped human mesenchymal stem cells (20X) 24 hours after seeding
on cell polystyrene cell culture surface.
Figure 2b Rod shaped human cardiomyocytes forming intercellular junctions with
neighboring cells.

Figure 3: (a-h) Left panel are positive controls, consisting of cardiomyocytes. Right panel
are transformed hMSCs. (10X)

a: No staining observed against fast myosin (MF-1) in human cardiomyocytes
b: No staining observed against fast myosin (MF-1) in untreated hMSCs (negative
control)
d: Positive staining for sarcomeric myosin (MF-20) in co-cultured hMSCs
f: Positive staining for heavy chain myosin (β-MyHC) in co-cultured hMSCs
h: Positive staining for troponin-T in co-cultured hMSCs.
j: Negative staining against troponin-I
c,e,g,i: Positive staining in cultured cardiomyocytes for MF-20, β- MyHC, troponin-T and
troponin-I respectively.

Figure 4: RT-PCR for specific hMSC transformation markers (48 hr-coculture). Lane 1:
1kb DNA Ladder, Lane 2: hMSC (negative control), Lane 3: conditioned media treated
hMSC in the presence of serum, Lane 4 conditioned media treated with hMSC in the
absence of serum, Lane 5: cell-cell contact dependent coculture. Lane 6: human
cardiomyocytes (positive control).
β–MHC, β-actin and CT-3 expression in cell-cell contact dependent coculture.
Expression of β-actin in conditioned media ± serum. GADPH is internal control. Tn-I is
troponin-I expression in cultured cardiomyocytes.

Figure 5: Expression of gap junctions connexin specific genes (Cx-32, Cx-40, Cx-43 and
Cx-45) in hMSC. Lane 1: 1kb DNA Ladder, Lane 2: hMSC expression of specific
connexins, Lane 3: Expression of connexin specific genes in human cardiomyocytes
(positive control)

320

Table 1: Group I (cardiomyocytes alone), showing the expression of β-myosin
heavy chain, β-actin, troponin-T and troponin-I. Group II (hMSC exposed to
conditioned media) show only expression of β-actin. Group III (cell-cell contact
co-culture) shows expression of β-myosin heavy chain, β-actin and troponin-T.

Table II: Expression of Connexin specific genes in untreated hMSC and adult
cardiomyocytes.

MF-20
(Sarcomer
ic myosin)

W
i
t
h
o
u
t

s
e
r
u
m

β -
Act
in

CT
-3

Cx-43

321

Abstract- A video microscopy based collaboratory has been
developed to study cellular network dynamics, in particular, to
monitor live-cell spatio-temporal organization in real-time. The
aim is to investigate the effects of intercellular communication
on tissue genesis, differentiation and cell survival.

The platform enables multiple researchers to remotely
access a digital microscopy system consisting of very high-
resolution CCD-imaging technology coupled with real-time
(~1Gbps) data transfer throughput. Remote control and image
acquisition facilitates collaboration between cellular biologists,
tissue engineers and computational scientists studying complex
cellular organization dynamics and assembly.

The remote control microscope is connected to a local
‘Server’ whose software is written in Java 2 (jdk 1.3) and can be
accessed by a ‘Client’ using any web browser supporting Java
Any Internet user can control the microscope and interact with
other users who are on-line or are directly connected. This
interactive environment does not impose any hardware or
software limitations on the ‘Clients’.

A remote user can control the movement of the stage in X-Y
axes, control focus (Z axis), change magnification, change
excitation and light emission filters and their corresponding
shutters, acquire topographic and fluorescent images from the
microscope and process theses images.

The tele-microscopy based environment serves as a focal
point for investigators with different expertise to collaborate
synergistically on projects that require multi-disciplinary
approaches.

Keywords - Telemicroscopy, Collaboratory, Biocomplexity, Live-
Cell Observatory

I. INTRODUCTION

The ‘Cellular Network Dynamics’ project aims to monitor
cellular networks in real-time in order to gain insight into
their biological organization. The specific aims are: (i) to
study the live-cell spatio-temporal organization, the role of
intercellular communication and its effects on cell culture
‘function’ and ‘survival’; (ii) to develop computational
models of cellular network signaling and adaptability. A
microscope-based live video system (cellular observatory) is
implemented to enable tissue visualization, image analysis
and cellular network modeling.

This paper describes the implementation of a distributed
high-resolution digital microscopy system for visualizing
cellular network assembly and function. The “Telemic”
remote-control microscopy system [1,2] enables a shared
(client-server mode) observatory (Fig. 1) to study the
evolution and communication in cellular networks.

Interaction and Pattern Formation in Cellular Networks
Networks are ubiquitous in the biological world. Multi-

cellular organisms develop by transforming a collection of
undifferentiated cells into intricately organized groups of
cells that coalesce to form functional structures. This process
known as pattern formation is responsible for structural
differentiation, including rhythm formation in cardiac tissue.
The ability to dynamically detect cellular and sub-cellular
network dependent events is a first step in developing models
of cellular organization. Video monitoring of cellular activity
in tissue culture using immuno-fluorescence localization of
inter- and intracellular integrity (gap junctions, integrins,
actin fibers) makes possible studies of cellular network
dynamics (signaling complexity, self-organization). As the
numbers of attachment points (nodes) in these cellular
networks increase and the connectivity becomes more
efficient, one would expect the emergence of global, self-
organized, coherent tissue structures with new and complex
phenotype expression (i.e., network adaptation and stress
tolerance). The common problem in many highly coupled
systems is how the network structure (e.g. neurons; societies
and Internet) facilitates and constrains its own behavior
and/or mediates the propagation of stress/failure [3].

Cellular Observatory

Existing methods monitor singular cellular / sub-cellular
events and or produce only a static ‘snap-shot’ of a specific
moment of a dynamic process of interest. Conventional
‘fixed-cell’ assays are inherently deficient in elaborating the
dynamic links between the inter- and intracellular processes
that define cellular homeostasis. In contrast, simultaneous
tracking of a set (e.g. three or more) of cell specific functions
in each of the ‘units’ of the cellular assembly can help
unravel some of the critical links that are involved in the
dynamic re-organization of cellular network behavior.

The specific methodological approach under development
in our labatory monitors cellular organization by binding
fluorescent markers to specific structures within the living
cell and recording real-time images of cellular culture
activity, spanning many hours of observation. The use of
multiple fluorescent markers help inter-relate cell function
(e.g. cytoskeletal meshwork, gap junction distribution) to the
functional inter-connectivity of the cellular network, as well
to its viability. The acquired images form the basis for the
time-lapse mapping of processes and modeling of the
emergent intercellular communication patterns. The
sequential frames (pattern formation) are used as a baseline to
study the role of spatio-temporal organization in the

REMOTE MONITORING
OF

CELLULAR NETWORK ASSEMBLY AND FUNCTION

Vijay Noronha2, Can Evren Yarman2 , J. Yasha Kresh1, Banu Onaral2

1Depts. of Cardiothoracic Surgery / Medicine, Medical College of Pennsylvania/Hahnemann University, PA, USA
2School of Biomedical Engineering, Science and Health Systems, Drexel University, PA, USA

322

adaptation of the formed cellular network to the imposed
environmental changes.

The distinguishing features of the live-cell telemicroscopy
system is its modularity and universal applicability, and in
particular, its ability to remotely acquire and control
fluorescent and brightfield images in real-time, spanning
hours to days of observation.

In addition, the concept of a distributed ‘collaboratory’
i.e., a multidisciplinary environment without walls (“virtual
center”), assembled and constituted by the research areas and
expertise of its members is exemplified by this initiative. A
major rationale advanced for this approach is that "It is easier
to move information around than the requisite technology or
people."

II. METHODOLOGY

The software for remote control microscopy was initially

developed utilizing a very high-speed optical link with 1
Gbps IP infrastructure (gigabit per second Ethernet + 2.5
Gbps SONET), ultra-high capacity router and ultra-high
speed non-linear optical regeneration, between Drexel main
campus and MCP-Hahnemann University for controlling the
Telemic microscope and associate components:

1) Microscope (Nikon Diaphot 300): The Diaphot 300
is a research level inverted optical microscope with
multiple optical output ports and epi-fluorescence
capability

2) Digital Controller (Ludl MAC 5000 with RS232 and
USB communication): This is a high performance
modular control system designed to automate and
remote control the microscopy functions (X-Y and Z
movement, Filter and shutter control). This module
automates the control of:

a) <X-Y Movements>: This module controls the
movement of the stage in the X-Y plane and has the
following features:
• Incremental (0.2 micron / step) movements in

the any X-Y directions.
• Ability to return back to the set origin from any

given position
• Calibrate the stage by prompting its movement

to the respective X-Y limits.
• Ability to move the stage to any specified X-Y

coordinates, within the available field of
excursion. This functionality is graphically
emulated on the screen that maps the area
available for stage movement and then provides
cursors to mark the x-y coordinates.

• Ability to undo stage movements.
• Ability to control the speed of the stepper

motors controllable by the ‘Client’ -the stage
can be directed to move at a prescribed speed.

b) <Focus Control> (Z axis): The focus control
system provides reproducible, high-resolution
automated control of the microscope focus
using a micro-stepping motor l (0.02
micron/step -step size.)

c) <Filters Wheels>: This module allows the
changing of filters at Excitation (illumination
end) and at the Emission (camera end) with 30
msecs between switched positions.

d) <Shutter Control>: This module controls the
opening and closing of shutters of the excitation
and emission filter wheels. Closing the shutters
between image acquisitions prevents light
bleaching (e.g. fluorescent marker) of cell
culture during prolonged observation (time-
lapsed motion studies).

3) Digital Camera:

Camera 1) Roper CoolSnapFX (12-bit dynamic
range @ 1300 x 1030) A cooled (-30°C) digital
CCD camera designed for fluorescence imaging
Camera 2) Sony DFW-V300 (30 fps @ (640 x 480)
VGA) is a digital video camera which uses the
"IEEE-1394" (Firewire) computer interface.

The remote control microscope is connected to a local

‘Server’, which can be accessed by a ‘Client’ using any web
browser that supports Java. The ‘Server’ software is written
in Java 2 (jdk 1.3). Any Internet user can control the microscope
and interact with other users who are on-line or are directly
connected. This interactive environment does not impose any
hardware or software limitations on the ‘Clients’.

The Telemicroscopy ‘Server’ runs on a standard Windows
NT workstation with a fixed IP address. The ‘Server’

Fig 1. Telemicroscopy (Client-Server Architecture)

323

automates functions such as image acquisition and stage,
focus, filter and shutter control.
 The image acquisition module interfaces with the camera
and captures images at a specified rate (e.g. 10 fps) and writes
them to disk in jpeg (compressed) format.

The ‘Server’ also provides a <Chat> function, which
allows on-line users to converse with other Telemic
subscribers.

A <Discuss> mode was implemented to enhance the
collaboration functionality to enable users to exchange
information about a captured image among each other. In
addition, a dynamic pointer is invoked such that it can be
“surrendered ” to any one of the users in the <Discuss>
Mode. If a user moves the arrow around and repositions it,
then a corresponding arrow on all of the active screens will be
repositioned accordingly.

The Telemicroscopy ‘Client’ is a Java applet (Fig. 2) that
emulates the functions of a microscope and can be viewed in
any java-enabled browser. The java ‘Client’ provides an
interface to facilitate the following functions – <X-Y stage
movement control> <filter wheel> and <shutter control>,
<focus control>, <image update>, <image snapping>, <image
editing> (filtering), <chat client>, <discuss client>, <video
recorder> to display images at user-specified rates from the
‘Server’, <illumination control> and <changing objectives>.

The ‘Client’ provides an <EDIT> feature, which allows
editing of captured images. Image processing functions
currently available are <Grayscale>, <Invert>, <Blur>,
<Sharpen> and <Contrast>. This module can be expanded to
include various nonlinear filtering algorithms and user-
specific image processing routines such classification
counting, size distribution and analysis
 The Java ‘Client’ updates its image after every successful
‘Server’ command execution. The “virtual” <Video
Recorder> feature allows users to view real time video at
user specified frame rates. (Default-10 fps)
 The <Tiling> feature allows a user to create a montage
(topographic map) of a specific region of the cell culture.
This allows automatic control of the stage to facilitate
capturing sequential “tiles” of the desired area and then
reassembling them into a composite representation.

 To observe live cell phenomenon (e.g. making and
breaking of communication channels) brightfield imaging is
combined with fluorescence imaging. Brightfield imaging
using a digital video camera (Sony DFW-V300- 30 fps)
camera provides a topographic view of the specimen under
observation. Fluorescence imaging enables monitoring of
cellular organization by binding fluorescent markers (GFP) to
specific intra- or inter-cellular structures and recording the
real-time images of cellular network activity, spanning many
hours of observation to make time-lapsed movies. The use of
fluorescent markers helps relate specific cell phenomenon to
the network emergent function. The live-cell imaging system
combined with a regulated micro-environment (temperature,
media composition, atmospheric gases) control is a basic

requirement for long-term observation of the dynamic
organization of cellular networks.

III. ABBREVIATIONS AND ACRONYMS

1) Telemicroscopy: Remote Control Live Cell Virtual
Observation Platform

2) Telemic: Refers to Telemicroscopy ‘Client’ or ‘Server’
or component module

3) Biocomplexity: Study of complex systems occurring
within organisms

4) GFP- Green Fluorescent Protein

IV. CONCLUSION

The imaging platform presented in this paper is being

used in studies of cellular network dynamics, in particular,
the monitoring of live-cell spatio-temporal organization and
the role of intercellular communication and its effects on
tissue genesis, differentiation and survival.

The distinguishing features of the live-cell telemicroscopy
system are 1) its modularity and universal applicability, 2)
ability to remotely acquire and control fluorescent and
brightfield images in real-time spanning hours to days of
observation.

The digital microscopy collaboratory environment serves
as a focal point for investigators with different expertise to
collaborate dynamically on projects that require multi-
disciplinary approaches.

Fig 2. Telemicroscopy Applet viewed by Microsoft
Internet Explorer (Left - The microscope control and
image acquisition interface. Center – updated image
from the microscope)

324

The long-term objective of this research is to reverse-
engineer biological principles and help inspire the design and
engineering of robust and adaptive communication networks
and intelligent systems. The advantages gained in mimicking
biological organization and function are particularly
intriguing. The cellular network models may have
applicability in areas such as emergent communication
networks, evolutionary/adaptive optimization of networks,
and distributed memory/"smart agents". In addition, the
“biocomplexity” inspired concepts of self-regulation [3] and
assembly can be explored “in-silico” and generalized to study
autonomous agent models; 2-D cellular automata; “flocking”
self-organized/coalition behavior; search pattern evolution
problems; evolutionary optimization problem; spatial genetic
algorithms among others.

V. ACKNOWLEDGMENT

This effort is supported in part by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force
Research Laboratory, Air Force Material Command, USAF.

VI. REFERENCES

[1] Wolf G, Petersen D, Dietel M, Petersen I: Telemicroscopy
via the Internet, Nature, 391:613, 1998.

[2] Onaral, B., Kresh, J.Y., Luzuria, E. “Complex Biological
Systems” Plenary Lecture: IEEE-EMBS Asia-Pacific
Conference on Biomedical Engineering, September 26-28,
2000, China

[3] Kresh, J.Y., Izrailtyan, I. "The Heart as a Complex
Adaptive System". In: Unifying Themes in Complex Systems,
Y. Bar-Yam, Ed., Perseus Books, 2001.

325

A novel fast optical switch based on two
cascaded Terahertz Optical Asymmetric

Demultiplexers (TOAD)

Bing C. Wang, Varghese Baby, Wilson Tong, Lei Xu, Michelle Friedman, Robert J.
Runser, Ivan Glesk, Paul R. Prucnal

Dept. of Electrical Engineering, Princeton University
Princeton, NJ, USA 08544
bingwang@princeton.edu

Abstract: A novel optical switch based on cascading two terahertz optical
asymmetric demultiplexers (TOAD) is presented. By utilizing the sharp
edge of the asymmetric TOAD switching window profile, two TOAD
switching windows are overlapped to produce a narrower aggregate
switching window, not limited by the pulse propagation time in the SOA of
the TOAD. Simulations of the cascaded TOAD switching window show
relatively constant window amplitude for different window sizes.
Experimental results on cascading two TOADs, each with a switching
window of 8ps, but with the SOA on opposite sides of the fiber loop, show
a minimum switching window of 2.7ps.
© 2002 Optical Society of America
OCIS codes: (060.0060) Fiber optics and optical communications; (230.1150) All-optical

devices

References and links:

1. M. W. Chbat, B. J. Hong, M. N. Islam, C E Soccolich, P. R. Prucnal “Ultrafast Soliton Trapping AND
Gate,” J. Lightwave Technol. 10, 2011-2016 (1992)

2. N. J. Doran and D Wood “Non-linear optical loop mirror,” Opt. Lett. 14, 56-58 (1988)
3. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane “a Terahertz optical asymmetric de-multiplexer (

TOAD),” IEEE Photon. Technol. Lett. 5, 787-790 (1993)
4. M. Eiselt “Optical loop mirror with semiconductor laser amplifier,” Electron. Lett. 28, 1505-1507 (1992)
5. N. S. Patel, K. L. Hall, K. A. Rauschenbach “40-Gbits cascadable all-optical logic with an ultrafast

nonlinear interferometer,” Opt. Lett. 21 (18), 1466-1468 (1996)
6. S. Nakamura, K. Tajima, and Y. Sugimoto “Experimental investigation on high-speed switching

characterstics of a novel symmetric mach-Zehnder all-optical switch,” Appl. Phys. Lett 65, 283-285
(1994)

7. K. I. Kang, I. Glesk, T. G. Chang, P. R. Prucnal, R. K. Boncek “Demonstration of all-optical Mach-
Zehnder demultiplexer,” Electron. Lett. 31 (9), 749-750 (1995)

8. D. Campi, C. Coriasso “Wavelength conversion technologies,” Photonic Netw. Commun. 2, 85-95 (2000)
9. I. Glesk, and P. R. Prucnal, “250-Gbps Self-Clocked Optical TDM with a Polarization-Multiplexed

clock,” Fiber Integrated Opt. 14, 71-82 (1995)
10. K.-L. Deng, R. J. Runser, P. Toliver, C. Coldwell, D. Zhou, I. Glesk, and P. R. Prucnal, “Demonstration of a

highly scalable 100-Gbs OTDM computer interconnect with rapid inter-channel switching capability,” Electron. Lett.
34, 2418 (1999).

11. P. Toliver, I. Glesk, and P. R. Prucnal, "All-optical clock and data separation technique for asynchronous
packet-switched OTDM networks," Opt. Commun. 173, 101-106 (2000)

12. P. Toliver, K.-L. Deng, I. Glesk, and P. R. Prucnal, “Simultaneous Optical Compression and
Decompression of 100 Gb/s OTDM Packets Using a Single TOAD and a Bi-directional Optical Delay
Line Lattice,” IEEE Photon. Technol. Lett. 11, 1183 (1999)

13. K.-L. Deng, R. J. Runser, P. Toliver, I. Glesk, and P. R. Prucnal, “A highly scalable, rapidly-
reconfigurable, multicasting-capable, 100-Gbit/s photonic switched interconnect based upon OTDM
technology,” J. Lightwave Technol. 18, 1892 (2000)

(C) 2002 OSA 14 January 2002 / Vol. 10, No. 1 / OPTICS EXPRESS 15
#37391 - $15.00 US Received November 11, 2001; Revised December 20, 2001

326

14. K.-L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, “Demonstration of Multicasting in a 100-Gb/s
OTDM Switched Interconnect,” IEEE Photon. Technol. Lett. 12, (5), 558-560 (2000).

15. K. L. Hall, B. S. Robinson “Bit error rate characterisation of 100-Gbps all-optical demultiplexers,”
CTuW1 CLEO ’99, (1999)

16. P. Toliver, R. J Runser, I. Glesk, P.R. Prucnal “Comparision of three nonlinear interferometric optical
switch geometries,” Opt. Commun. 175, 365-373 (2000)

17. K. I. Kang, T. G. Chang, I. Glesk, P. R. Prucnal “Comparison of Sagnac and Mach-Zehnder ultrafast all-
optical interferometric switches based on a semiconductor resonant optical nonlinearity,” Appl. Opt. 35
(3), 417-426 (1996)

18. R. J. Runser “Interferometric SOA-Based Optical Switches for all-optical processing in communication
networks and sampling systems,” Department of Electrical Engineering, Princeton University, June 2001,
Chapter 2 p. 45-47

19. Y. Ueno, S. Nakamura, K. Tajima “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s
by using a symmetric-Mach-Zehnder-type semiconductor regenerator,” IEEE Photon. Technol. Lett. 13,
469-471 (2001)

20. C. Joergensen, S. L. Danielsen, T. Durhuus, B. Mikkelsen, K. E Stubkjaer, N. Vodjdani, F.
Ratovelomanana, A. Enard, G. Glastre, D. Rondi, R. Blondeau “Wavelength conversion by optimized
monolithic integrated Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 521-523 (1996)

1. Introduction:

Ultrafast optical demultiplexers are essential components of optical time division multiplexed
(OTDM) networks operating at 100 Gb/s and faster. Present approaches to optical
demultiplexing include using switches based on soliton gates [1], nonlinear loop mirrors [2],
Terahertz Optical Asymmetric Demultiplexer (TOAD) [3], Semiconductor Laser Amplifier in
a Loop Mirror (SLALOM) [4], Ultrafast nonlinear interferometer (UNI) [5], Mach-Zehnder
interferometer with semiconductor optical amplifier [6,7], and Michelson interferometer with
semiconductor optical amplifiers [8]. Due to the simplicity of design and low switching
energy, the TOAD has been used in numerous OTDM systems and network demonstrations
[9-14]. The TOAD consists of an optical loop mirror with an SOA placed off centered in the
loop. The offset from the center determines the switching window width of the TOAD, as the
asymmetry leads to a difference in arrival time between the two counter propagating data
pulses at the SOA. A precisely timed clock pulse is injected into the loop such that its arrival
at the SOA provides a relative π phase shift to the data pulse entering the SOA after the clock
pulse has hit the SOA. This results in constructive interference at the output of the TOAD and
the output pulse emerges.

One limitation of the TOAD approach is the finite propagation time of the pulse
across the SOA [15]. If the offset of the SOA from the center is decreased such that the SOA
starts to straddle the center of the loop, the effective SOA length that the two counter
propagating pulses see is reduced. The decrease in effective SOA length leads to a reduction
in the contrast ratio of the TOAD switching and thus, an excess power penalty. The effective
length of the SOA required for producing the relative π phase shift places a practical
limitation on the switching window size of the TOAD to be greater than the propagation time
of the pulse through the SOA. The smallest switching window size obtained with a TOAD is
3.5ps [16].

In this paper, we demonstrate a new method of achieving narrow switching windows
by cascading two TOADs, each with the SOA on opposite sides of the fiber loop. This
method overcomes the limitation on the switching window placed by the length of the SOA.

2. Principle of operation

A characteristic of the TOAD switching window is that the rising and falling edges have
different slopes [16]. The location of each edge is determined by the side of the fiber loop that
the SOA is placed with respect to the control port. If the SOA is placed on the same side of
the loop as the control port then the rising edge of the switching window is very steep, limited

(C) 2002 OSA 14 January 2002 / Vol. 10, No. 1 / OPTICS EXPRESS 16
#37391 - $15.00 US Received November 11, 2001; Revised December 20, 2001

327

only by the clock pulse width. The falling edge slope of the switching window is a result of
the clock and the counter propagating data pulses meeting inside the SOA and is thus related
to the propagation time of the pulse through the SOA. If the SOA is placed on the opposite
side of the loop, as the control port, the two edges are interchanged and the falling edge of the
switching window is much steeper than the rising edge. Figure 1 shows the switching
windows with the SOAs on different sides of the loop.

(a) (b)

Fig 1: The switching windows with the SOA on (a) same side as the control port (b) different side as the

control port

The transfer function of one TOAD can be written by the basic interferometric

equation [17]

{ }))()(cos()()(2)()()(212121 tttGtGtGtGtSW φφ −−+=
(1)

where G1 (t) , φ1 (t) and G2 (t), φ2 (t) are the time dependent gain and phase changes
experienced by the two counterpropagating pulses as they traverse the SOA. By cascading the
two TOADs with a time shift of δ between the two windows, the overall transfer function
referred to as Cascade (t, δ) becomes the product of the two constituent ones, SWA (t) and
SWB (t) with the time shift taken into account.

)()(),(δδ −×= tSWtSWtCascade BA

(2)
In such a configuration, one TOAD has the SOA on the same side of the loop as the

control port and the other has the SOA on the opposite side of the loop as the control port.
Their switching windows are then placed such that the sharp edge of each overlaps the sharp
edge of the other, as shown in figure 2, and this results in a switching window size limited
only by the optical pulse width of the clock and data.

time (ps)
0 5 10 15

2.5

5.0

7.5

10

0.0
-3

a.u
PC

50:50

TOAD
SOA

time (ps)
-5 0 5 10

0.0

2.5

5.0

7.5

10

12-7

TOAD

PC

50:50

SOA

a.u

(C) 2002 OSA 14 January 2002 / Vol. 10, No. 1 / OPTICS EXPRESS 17
#37391 - $15.00 US Received November 11, 2001; Revised December 20, 2001

328

Fig 2 The principle of the optical switch based on overlap of two switching windows

Thus, in comparison with the individual switching windows of figure 1, the cascaded
TOAD has its switching window’s falling and rising edges determined by the sharp edges of
the two individual windows. The slow falling and rising edges of the two individual TOAD
windows, limited by the propagation time of the pulses in the SOA, do not affect the
switching window of the cascaded TOAD.

To study this effect, simulations were done using a model for the gain and the phase
changes, based on previous work [17]. The simulation uses Gaussian pulses with 1ps width
for input clock and 1.5 ps width for the input data. The SOA is taken as 500 µm long with a
200ps recovery time. Figure 3 shows the simulated switching window of one TOAD for
different SOA offsets. As the SOA is moved from one side of the loop to the other, the rising
and falling edges are interchanged. In figure 4, the switching window of the cascaded TOADs
is simulated with different delay offsets δ , between the two windows each of which are 8ps
wide. The switching window amplitude remains fairly constant until the width is decreased
to 1.4ps.

PC

50:50

TOAD

10:90

EDFA

SOA

Filter

PC

50:50

TOAD

10:90

EDFA

SOA

FilterOTDL

(C) 2002 OSA 14 January 2002 / Vol. 10, No. 1 / OPTICS EXPRESS 18
#37391 - $15.00 US Received November 11, 2001; Revised December 20, 2001

329

-15 -10 -5 0 5 10 15 20
0

2

4

6

8

a
.
u

time (ps)

Fig 3: The simulated switching window of a TOAD for different SOA offsets

0 1 2 3 4 5 6

45

60

time (ps)

3 2 1

15

30

0

a. u

Cascade (t, -8.0ps)

Cascade (t, -7.5ps)

Cascade (t, -7.0ps)

Cascade (t, -6.5ps)

Cascade (t, -6.0ps)

Cascade (t, -5.5ps)

Cascade (t, -5.0ps)

Cascade (t, -4.5ps)

Cascade (t, -4.0ps)

Fig 4: The simulated switching windows with different delay offsetsδ between the two TOADs

(C) 2002 OSA 14 January 2002 / Vol. 10, No. 1 / OPTICS EXPRESS 19
#37391 - $15.00 US Received November 11, 2001; Revised December 20, 2001

330

3. Experiments and results:

Fig 5: The experimental setup to measure the switching window of the cascaded TOAD

EDFL: Erbium Doped Fiber Laser, OTDL: Optical Tunable Delay Line, DDF: Dispersion Decreasing Fiber

EDFA: Erbium Doped Fiber Amplifier, SOA: Semiconductor Optical Amplifier

The experimental demonstration, shown in figure 5, uses two TOADs, each with an 8ps
switching window but with the SOA on opposite sides of the fiber loop with respect to the
control port. Two mode-locked Erbium Doped Fiber Lasers are used as clock and data pulse
sources. The SOA used in the experiment is a 500µm long Alcatel 1901 SOA biased near
100mA. The clock pulses have a wavelength of 1549nm and pass through an amplifier and
dispersion-decreasing fiber, which compresses the pulse width to 1ps. The data pulse width is
1.5ps and the wavelength is 1557nm. Prior to entering the first TOAD, the data pulse first
passes through a free space delay stage and a mechanical shaker. The free space delay stage
positions the temporal position of the data in the range of the switching window of the
cascaded TOAD. The mechanical vibrator is used to quickly scan the data pulses in time over
a 30ps range to map out the switching window. By continuously monitoring the switching
window on the oscilloscope, this technique provides a means of rapidly characterizing the
switching window [18]. After the mechanical vibrator, the data pulses enter the first TOAD.
The data pulse then exits from the output of the first TOAD and passes through a filter, an
EDFA and a tunable free space delay line, before entering the second TOAD. The filter
rejects the clock pulse of the first TOAD from entering the second TOAD. The tunable delay
line between the two TOADs controls the temporal position of the second TOAD’s switching
window relative to the switching window of the first TOAD, and thus provides the control
over the aggregate switching window size of the two cascaded TOADs. The output of the
second TOAD first passes through an optical filter to reject the clock pulse before entering a
power meter. The power meter is connected to a single shot oscilloscope that is synchronized
to the mechanical shaker. The switching window size can be inferred because the oscilloscope
displays the convolution of the data pulse with the switching window of the cascaded
TOADs.

Figure 6 shows experimental scan of the switching windows of the cascaded TOADs
for different delay times δ between the two TOADs as it appears on the single shot sampling
scope. The shape of the experimental switching windows differs from the simulated ones.

10:90

PC

50:50

TOAD

SOA

PC

50:50

TOAD

10:90

EDFA

SOA

Filter

EDFL@
1549nm

Amplifier
and DDF

Fiber

50:50

Shaker

EDFL@
1557nm

Meter
Power Single-shot

Scope
Filter EDFAOTDL OTDL

CLOCK

DATA

(C) 2002 OSA 14 January 2002 / Vol. 10, No. 1 / OPTICS EXPRESS 20
#37391 - $15.00 US Received November 11, 2001; Revised December 20, 2001

331

This could be due to experimental non-idealities like variation in control pulse energy and
slight variations in coupling losses of the mechanical vibrator used to scan the data signal
through the switching window. Also, the simple simulation model may not adequately take
into account other physical device level effects that may influence the switching behavior.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50
a.

u

time (ps)

4.0 ps delay
4.7 ps delay
5.0 ps delay
5.3 ps delay
6.0 ps delay
7.0 ps delay
8.0 ps delay

Fig 6: Experimental data, showing the switching windows convolved with the data pulses, for different delay offsets

δ , between the constituent switching windows

The experimental windows shown in figure 6 represent the convolution of the 1.5ps
data pulses with the actual cascaded TOAD switching window. The actual switching window
size can be inferred by de-convoluting the measured switching window with a 1.5ps pulse.
We compare the actual switching window widths obtained theoretically and experimentally as
a function of δ, the delay offset between the two TOADs, in figure 7. We also show the
switching windows obtained after de-convolution with the data pulse. The difference
between the experimental and de-convoluted experimental switching windows increase as the
switching window becomes smaller. The cascaded TOAD switching window is also limited
by the input clock pulse width; this is evident in the decrease in switching window amplitude
when the window width narrows to less than 2.9 ps.

(C) 2002 OSA 14 January 2002 / Vol. 10, No. 1 / OPTICS EXPRESS 21
#37391 - $15.00 US Received November 11, 2001; Revised December 20, 2001

332

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

delay offset (ps)

F
W

H
M

(p
s)

Experim ental Deconvolved Theory Deconvolved Experim ent

Fig 7: The full width half maxima of the experimental, theoretical and de-convoluted experimental

switching windows with different delay offsets, δ

4. Discussion:

Presently, one of the best performing interferometric fiber-based optical switch geometry is
the Symmetric Mach-Zehnder (SMZ) geometry [16], and we compare the performance of the
cascaded TOAD to the CMZ. The SMZ requires stringent polarization control as thermal
fluctuations can offset the interference conditions between the two arms [18]. The cascaded
TOAD is immune to thermal effects in the laboratory because the two counter propagating
pulses in each TOAD travel through the same span of fiber. However, one advantage that the
SMZ structure enjoys over the cascaded TOAD is that the SMZ can be easily integrated onto
a single photonic chip. Various wavelength converters and 3R regenerators have already
made use of this and similar structures [19,20]. The integration of the cascaded TOAD is
presently a difficult problem yet to be solved.

The drift in delay offset between the two individual TOADs due to thermal
fluctuations can lead to slight variations in overall switching window size. However, this is of
the order of few femtoseconds and is negligible compared to the overall switching window
size, which is of the order of picoseconds. For constant switching window size, the delay line
between the individual TOADs can be replaced by fusion spliced fiber lengths. This will
reduce the losses incurred by the signal on passing from one TOAD to another, resulting in
higher switching contrast ratio.

The overall switching window depends only on the extent of partial overlap between
the two switching windows and not on the relative sizes of the individual windows. However,
it is necessary to ensure that the smaller window does not fall completely within the larger
window, in which case the overall switching window will be the same as the smaller window
and will be limited by the propagation time of pulses in the SOA. Hence, the cascaded TOAD

(C) 2002 OSA 14 January 2002 / Vol. 10, No. 1 / OPTICS EXPRESS 22
#37391 - $15.00 US Received November 11, 2001; Revised December 20, 2001

333

gives the same characteristics for different relative locations of SOAs in the loops, when the
overlap is partial.

In summary, we demonstrated a novel switch based on two TOADs by utilizing the
switching window characteristics of each to achieve a narrower temporal switching window
output.

(C) 2002 OSA 14 January 2002 / Vol. 10, No. 1 / OPTICS EXPRESS 23
#37391 - $15.00 US Received November 11, 2001; Revised December 20, 2001

334

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 14, NO. 3, MARCH 2002

All-Optical Clock Division With Mode-Locked
Figure-Eight Laser Based on the Slow Carrier

Recovery Rate in Semiconductor Optical Amplifier
Lei Xu, Minyu Yao, Bing C. Wang, Ivan Glesk, Senior Member, IEEE, and Paul R. Prucnal, Fellow, IEEE

Abstract—With a mode-locked figure-eight laser, we demon-
strate the clock division operation using a semiconductor optical
amplifier (SOA) with a slow carrier recovery rate. We show stable
clock division at 2.5 GHz and two output states at half the repeti-
tion rate of the 10-GHz input pulses. The forming pulses in the laser
cavity will interact with each other at the onset of mode locking
when the SOA in the laser has a relatively slow carrier recovery
rate. A numerical model of the laser is built to simulate the gener-
ation of clock division.

Index Terms—Mode-locked lasers, optical communication,
semiconductor optical amplifiers, time-division multiplexing.

I. INTRODUCTION

I N OTDM systems, separate channels at the same frame rate
are multiplexed together in the time domain into a high-

speed aggregate data stream. To access the individual time slots,
high-speed all-optical clock division can be used to generate
optical clock signal at the frame rate for time-domain demul-
tiplexing. Various all-optical clock division schemes have been
demonstrated [1], [2]. Manninget al. demonstrated all-optical
clock division based on the configuration of terahertz optical
asymetric demultiplexer (TOAD) with a feedback loop [1], and
pointed out that stable mode of clock division occurs when the
input pulse repetition rate approaches the gain recovery rate
of the semiconductor optical amplifier (SOA) [3]. Lee demon-
strated a polarization-independent all-optical SOA/grating-filter
switch for clock division using self-phase modulation in the
SOA [2]. In Manning’s and Lee’s approaches, an SOA with very
short lifetime is required for OTDM data streams with high line
rate. In this letter, we demonstrate optical clock division with a
mode-locked figure-eight laser that uses a TOAD as an optical
modulator. A laser with similar structure was previously pro-
posed for clock recovery [4]. We show that neighboring pulses
in the laser cavity will interact with each other at the onset of
the mode locking process, and that all-optical clock division oc-
curs by using an SOA that has a recovery rate much slower than
the line rate of the input optical pulses. We also build a numer-
ical model of the laser to simulate the generation of clock divi-

Manuscript received August 16, 2001; revised October 4, 2001.
L. Xu, B. C. Wang, I. Glesk, and P. R. Prucnal are with the Department

of Electrical Engineering, Princeton University, NJ 08544 USA (e-mail:
Leixu@ee.princeton.edu).

M. Yao is with the Department of Electronic Engineering, Tsinghua Univer-
sity, 100084 Beijing, China.

Publisher Item Identifier S 1041-1135(02)00874-1.

Fig. 1. Experimental setup.

sion, and analyze the working modes of the laser for different
conditions.

II. EXPERIMENTS AND RESULTS

The experimental arrangement is shown in Fig. 1. The laser
is composed of two loops: the left loop with an SOA has a
TOAD structure and functions as an optical modulator; the right
loop with the optical isolators functions as a ring cavity. A fiber
stretcher in the right loop adjusts the laser cavity length to satisfy
the requirement for harmonic mode locking. The tunable band-
pass filter (BPF) has a bandwidth of 1.0 nm. An erbium-doped
fiber amplifier (EDFA) provides the gain. The total cavity length
is about 60 m. An optical attenuator before the “IN” port is used
to control the input optical pulse power. The experimental re-
sults at 25 and 10 GHz are discussed separately.

1) At 2.5 GHz, the switching pulses are derived from
a gain-switched distributed-feedback (DFB) laser diode at
1534 nm and then compressed to 12.0 ps by dispersion com-
pensation fiber. The tunable filter in the laser cavity is centered
on 1557 nm.

The trace and RF spectrum of the input signal are shown in
Fig. 2. When the injection current of SOA is larger than 130 mA,
the laser can be mode locked by the input pulse train and the
output pulses have the same repetition rate as the input pulses.
In order to get the stable operation of clock division, we set the
injection current of SOA to 110 mA with the associated gain re-
covery time to be about 700 ps, and optimize the optical power
of the input pulses and the loop gain in the laser cavity. When
the mean optical power of the injected pulses is 8 mW, the stable
output at half the repetition rate of the input signal arises and the
mean optical power in the laser cavity is 5 mW. Fig. 3 shows the

1041–1135/02$17.00 © 2002 IEEE

335

XU et al.: ALL-OPTICAL CLOCK DIVISION WITH MODE-LOCKED FIGURE-EIGHT LASER

(a) (b)

Fig. 2. (a) Oscilliscope traces (200 ps/div), and (b) radio frequency spectrum
of the input signal at 2.5 GHz.

(a) (b)

Fig. 3. (a) Oscilliscope traces (200 ps/div), and (b) radio frequency spectrum
of the output signal at half the repetition rate of the input signal.

(a) (b)

(c) (d)

Fig. 4. (a) Input 10-GHz pulse trace. (b) Output signal from the laser.
(c) Quasi-stable state I. (d) Quasi-stable state II (horizontal scale is
50 ps/div).

trace and RF spectrum. In Fig. 3(b), the sharp spectral compo-
nent at half the frequency of the input signal clearly shows the
clock division operation.

2) To perform clock division at 10 GHz, we use a 10-GHz er-
bium-doped fiber laser as the pulse source. The input pulsewidth
is 11 ps and the average optical power is 12 mW. The input pulse
trace is shown in Fig. 4(a). The optical power inside the laser
cavity is 6 mW. When the current is set to 120 mA, we get the
“eye diagram”-like output signal shown in Fig. 4(b). After de-
creasing the persistent time of the oscilloscope display, we find
that the trace in Fig. 4(b) is a combination of two quasi-stable
states shown in Fig. 4(c) and (d). The two states, which are at
half repetition rate of the input, have a half period timing dif-
ference. In our experiments, each of the states can be stable for

Fig. 5. Numerical model of the figure-eight laser.

1–2 s. For 10 GHz, the recovery time of the SOA used may be
too long, which may result in unstable operation. The unstable
output of the laser could also be the result of cavity length fluc-
tuation from imperfect laboratory conditions, such as thermal
fluctuations or mechanical relaxation of the fiber stretcher.

In our experiments, the working conditions of the laser, in-
cluding the SOA bias current, optical power of the input signal
and cavity light must be optimized to generate the clock divi-
sion operation.

III. W ORKING PRINCIPLES

The generation of clock division in the figure-eight laser is
directly related to the working conditions of the TOAD. During
the startup of the mode locking process, an input pulse passing
through the TOAD saturates the SOA and the light in the laser
cavity experiences a switching window. Due to the slow carrier
recovery rate, every subsequent pulse will experience a smaller
transmission coefficient through the TOAD than the previous
one. The interaction between adjacent pulses from the long SOA
recovery time will be further enhanced by the mode locking
mechanism. Through the combined effects of pulse interaction
and mode locking, the figure-eight laser generates a clock di-
vided signal at half the frequency of the entering pulse.

We build a numerical model to illustrate the generation of
clock division. Fig. 5 shows the diagram of the laser model. In
the simulation, the SOA carrier recovery rate is 400 ps and the
input signal is a 10-GHz pulse train, where the pulsewidths are
10 ps and peak power is 100 mW. The average power of the light
in the laser cavity is 4 mW. The evolution of optical pulses in
the cavity during the start-up process is shown in Fig. 6. The left
column of Fig. 6 is the pulse traces, showing the width and the
amplitude of the pulses. The right column shows the spectra of
the pulses.

In the beginning stages, shown in Fig. 6(a) and (b), the repeti-
tion rate of the pulses in the laser cavity is 10 GHz. The spectrum
shows that the spacing between neighboring lines is 10 GHz.
The pulse amplitude variations in the time trace are caused by
the slow SOA carrier recovery rate. Since the carrier recovery
time of the SOA is longer than the time between adjacent pulses,
optical modulation by the input pulses will not be the same
for all the pulses in the laser cavity during the startup of mode
locking. In stages to , shown in Fig. 6(c) and
(d), the amplitude differences between the pulses in the cavity
are further enhanced, and another sharp spectral lines appear be-
tween the neighboring 10 GHz lines in their spectra. Due to in-
teractions with the input pulses, stronger pulses in the cavity will

336

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 14, NO. 3, MARCH 2002

(a)

(b)

(c)

(d)

(e)

Fig. 6. The startup process of the clock division operation (a)N = 3,
(b) N = 20, (c) N = 50, (d) N = 70, and (e)N = 140 (N is the
number of calculation circles).

experience a higher transfer coefficient when passing through
the TOAD than weaker pulses. This process further enhances
strong pulses and suppresses weak pulses. After the start-up
process, the laser can work in a stable clock division state, as
is shown in Fig. 6(e). The spectrum shows that the spacing be-
tween neighboring lines is 5 GHz.

Fig. 7 shows the influence of the SOA recovery time and the
input pulse power on the working range of the clock division op-
eration at 10 GHz. The area in which clock division can occur is
labeled area “B” in Fig. 7 and this area approximately stretches
from a carrier lifetime range of 350–500 ps and peak power
levels of 0.05–0.15 W. In region B, the neighboring pulses will

Fig. 7. Working status of the laser under different SOA carrier recovery time
and peak power of the input pulse.

have strong interactions with each other during the startup of
mode locking, which results in clock division.

In region A, the SOA has a relatively short recovery time. The
interactions through the TOAD between optical pulses in the
laser cavity are weak. The output pulses repetition rate will be
equal to the input, which is used for clock recovery. In region C,
the carrier lifetime is further increased where not just two pulses,
but multiple neighboring pulses in the laser cavity will interact
with each other due to the very slow carrier recovery rate. As a
result, the figure-eight laser can produce a signal at one fourth or
one eighth of the repetition rate of the input signal. However, in
practical applications, stability issues limit the number of output
pulse rate divisions in which the laser can be operated.

Since the clock-divided signal also satisfies the harmonic
mode locking condition, an additional condition is required for
clock-division operation: the repetition rate of the input signal
should be an even multiple of the round-trip frequency of the
laser cavity.

IV. CONCLUSION

We demonstrate the optical clock-division operation using a
mode-locked figure-eight laser that employs an SOA with a slow
carrier recovery rate. We show stable clock division at 2.5 GHz,
and two clock division states at half the repetition rate of the
10-GHz input pulses. A numerical model was built to simulate
the generation of clock division in the laser. At the onset of mode
locking, the forming pulses in the laser cavity will have strong
interactions with each other as a result of the slow SOA carrier
recovery time, which leads to the generation of clock division.

REFERENCES

[1] R. J. Manning, A. J. Poustie, and K. J. Blow, “All-optical clock divi-
sion using a semiconductor optical amplifier loop mirror with feedback,”
Electron. Lett., vol. 32, pp. 1504–1506, 1996.

[2] H. J. Lee and H. G. Kim, “Polarization-independent all-optical clock
division using a semiconductor-optical-amplifier/grating-filter switch,”
in OFC’99, 1999, pp. 95–97.

[3] R. J. Manning, A. E. Kelly, K. J. Blow, A. J. Poustie, and D. Nesset,
“Semiconductor optical amplifier based nonlinear optical loop mirror
with feedback: Two modes of operation at high switching rates,”Opt.
Commun., vol. 157, pp. 45–51, 1998.

[4] L. E. Adams, E. S. Kintzer, and J. G. Fujimoto, “Performance and scal-
ability of an all-optical clock recovery figure eight laser,”IEEE Photon.
Technol. Lett., vol. 8, pp. 55–57, Jan. 1996.

337

���������	
� �	�� �� 	�� �������
	��� �
�
����	� �� 	��
	��
���	� ��	��
�
�����	��� ����	�������

���� �� �
�� �� ��� �� �
������ �
��� �� !��� "����	 #� "�����
$%
� &���'� (
� "� (���
�

��������� 	��
������ ���� ������ ��������� �� ����� 	��

"����%��) *��	 +,,)-
����	�� . /��	����� +,,)

��������

*��0��	��
� �������
	��� �
�
����	� �� 	�� 	��
���	� ��	��
�
�����	��� ����	������� 123* 4 �� ���������	
���

��������� * ���	���� 5
%� ����	 �� ��6��	�� ��	� 	�� 23* �	��	�� 	� ����� 	�� �
		��� ��������	 �7��	 �
��� ��

	�� �
	
 ���� ��6��	�� ��	� 	�� ���	��� ���	� 2�� ��	 ����� �
	� 1��"4 �� 	�� �������
	�� �	�	
), &�8� �� ��
����

5�	� ��7����	
���	� �� ���	 �
	
 	����� 6�		��
�� �5�	����� 5����5 ����� ���������	
� ����	� ���5 	�
	 ��	��
�

�������
	��� ���� 	�� 23* �
�
 �	���� 	����
��� 	� 	�� 	����� 6�		�� �� 	�� �������	 �
	
 ����
�� 3��� ��� ��
��
�

�� ��"� ����5),�9 �
%� ���� ���������� ��	
���� ��� ���	 	����� 6�		�� %
�� ��): ��� � +,,) ����%��� /������
���� *�� ����	� �����%���

��������� "������
	���- 32 ;- *��0��	��
�

�	
����������

$� ��	��
� 	��� ��%����� ��	�������� 132 ;4
��	5��'�
�� 	�
��������� ���	���� ����%��
�
��
�����
��
������� ��<� 	��� ���	�
�� ��0
	������� 	� �����
	� ����0����� �
	
 �	��
��� (��0
���� ���	��� �� 	�� 	����� �� �
	
 ����� �� ���	��
�
��� ������ ��	��������
�� ����	�������� 5�	�
�����
� ��	��0��
���� �����	
�'� $� 32 ; ���0
	���� 	�� ��	��
� ���� 5��	� ������� ����� 	�

	���� �� 	�� ��	��0��
���� ��
���� ��	5���
�6
0
���	 	��� ���	� �� 	��
�����
	� �
	
 �	��
�� ��
�	���	 ���	��� �� 	�� �
	
 ���� ��
��
�� ����

5��	� �� ��<���� 	������	 	�� ��	5��'� 2����
��<������	� 	� �
��	
�� 	�� 	�����
�� ����
��
�� 5�	��� 	�� ��	5��' 5���� ��	
����� 	�� �
	

�� 	�� ��	��
� ���� ��	�%
	� 	�� ��%�������	 ��
��
��	��
� ��	������ ����
����
�� ��
��������� 1="4
�������
	����
$� ��	��
� =" �������
	���� ��	��
� ����' �����

�� ����
	�� �� 	�� �������	 �
	
 ����
� 	�����

 �������
� ��	��
� �
	�� 2�� ���� ��
� ��	��
� ��0
�����
	�� �� 	�� �������
� �
	� 	�
	 ���%���� �����
����	���� 	����� 6�		�� �����������
�� ����
����
�
�
����	�� /��������	��0�
��� ��	��
� �
	��
	0
	�
�	 �����
� ��	����	 >)?@A ����� 	���
�� ����
�	

�� ��<��� ��5 �5�	����� ������� 2�� 	��
���	�
��	��
�
�����	��� ����	������� 123* 4 ��
�
��	��������	��� B��� ���� ������ �
��� ��	��
� �
	�
5�	�
 ���������	�� ��	��
�
����B�� 1/3*4

)C D�%����� +,,)

3�	��� �������
	����)99 1+,,)4 E=?EE

555�����%�������8���
	�8��	���

��������������
	���� 2���8�
�F G)0.,90+CE0+,@)�

�� ��! �������� ����5
��H������	����� 1���� �
��4�

,,=,0@,)E8,)8I 0 ��� ����	 �
		�� � +,,) ����%��� /������ ���� *�� ����	� �����%���
($$F /,,=,0@,)E 1,) 4,)C@+0C

338

��
���
�����	���
��� �� 	�� ���� >+A� 2�� 23*
�
�
���
�� ���� ��� ��� 32 ; ����	��������
>CA� ��	��
� ����
� ���������� >.A� ��	��
� �
�'�	
�5�	����� >:A�
�� ��	��
� ������ >EA� J��
�� ��0
	��
� �������
	���� 6�		���� �
	
 �����
�� ��6��	��
��	� 	�� ���	��� ���	 �� 	�� 23* � 3�� �������

�����
	�� 5�	� �������
	��� ���� 	�� 23* ��
	�
	 	�� ����%��� 	��� �� 	�� /3* �
� ��
�� ����0
	
	���� �� 	�� ��	��
� �
	
 ��	 �
	� �� 	� �
		���
��������	 �7��	�� $� 	��� �
��� 5� ��
 ���	����
5
%� 1��4 ��� ����	 	� ���
��� 	�� ����%���
�
	� �� 	�� /3* 	� ������� �
		��� ��������	 ��0
���	� >9?)=A� 2�� ��	��
� �������
	��� �
�
����	� ��
	�� 23*
), &�8� �� ��
���� �� ��
����� 	��
	����� 6�		�� �� ���	 �
	
 �����
�� 	�� ���� �� 	��
�5�	����� 5����5� ���������	
� ����	� ���5 	�
	
��	��
� �������
	��� ���� 	�� 23* �
�
 �	����
	����
��� 	� 	�� 	����� 6�		�� �� 	�� �������	 �
	

����
��

�	 ��������� �� ���������

2�� ��	��
� �������
	�� �
��� �� 	�� 23* ��
���5� �� J���)� 2�� /3* �� ��
���
�����	���
���
�� 	�� ��	��
� ����� 2�� �
	
 ���� ��	��� 	��
23* 	����� 	�� 9,8), ������
�� �����

�5�	����� 5����5 �� 	�� ��	��
� �������
	��� 2��
��	��
� 	�
��� ���
� ���� �� ���
�� �� 	�� ����
���	���� 	�� �7��	 ����	��� �� /3*� 5���� ��	��0
����� 	�� 	�����
� 5��	� �� 	�� �5�	����� 5��0
��5� /	���� �
	
 ����� ���	��� 	�� �5�	����� ��
	�� 23* 	����� 	�� �������
� �7��	 �� 	��
/3*� K�5�%���
	 ���� ��	 �
	��� 	�� ���5 /3*
����%��� 5��� �
��) ��	 �������� �� , ��	 	� ��0
�������� ���� ��
�� ��
��� 	�
�) ��	 �������� ��

��	���) ��	� 2�� �7��	 �� 	��� �
		��� ����������
5��� ����� 	�� ��	���	��� �
	�� �� 	�� ��	���� �
	

�� ����� 	�� ��� ��
��
�� ���
����� 	�� /3*
����%��� �
	� �
� ����� 	��� �
		��� ��������	
�7��	�
���
�� 	�� 	����� �� 	�� ����' ����� �� ��	

7��	�� �� 	�� ���
	��� �� 	�� �5�	����� 5����5 ��
5���� 	��� ������� 	�� ����� 	�
	
�� �5�	���� �	
5��� �
%� 	�� ������
	��� 	�
	 	�� ���	 �
	
 �����
�
%�� �	 ���� �� 	�� 	����� 6�		��� 2��� ������� ��
���5� �� J��� +� K�5�%��� 5��� 	�� 	����� 6�		�� ��
	�� �������	 �
	
 ����� ������� 	�� 	����
��� �� 	��
��	��
� �������
	��� 	�� 	����� 6�		�� �� �������	
�
	
 ����� 5��� �� ���%��	�� 	� 	�� ���
	�%� ��	��0
��	� ������ �� ��
��� 	�� ��	 ����� �
	� 1��"4 ���
��7����	 �5�	����� 5����5 ����
� 5���
� ��7����	
	����� 6�		�� %
�� 	� �
��
 ��		�� �����	
����� ��
	�� 23* L� �������
��� ��
�
�	����	����

�	 ����������� �� �������

2�� ��	��
� �������
	��� ���������	
� ��	� ��
���5� �� J��� =� 25�), &K� ����0���'�� �����
����� B��� �
���� �����
	� + �� ����� ��� 	�� �
	

�� ����'� 	�� �
	

	 �) �)C@E ��
�� 	�� ����'

	 �+ �)CC@ ��� 2�� �
	
 �� ����
	�� 5�	� +=)0)
������
���� ��	 ��<�����
�� 	�� 	����� 6�		��
��
���� ����
 ���� ��
�� ��
'�� 5�	�
�
		
����
��	�� ���� * ���	���	�� �����
�' 1 J�4 �
���
	
)C=9 �� ���%���� 	�� ������ ����	 	� ���
���
	�� /3* �
����� ����%��� �
	�� 2�� �	�	 �� 	��
 J� �
��� �� �������� 5�	� 	�� �
	
 �����
	�����
 C,FC, ������
�� 	��� ��6��	�� ��	� 	��
��	��
� �������
	�� 	����� 	�� ���	��� ���	�J���)� 3�	��
� �������
	��� 5�	� 23* �

J��� +� 2����� 6�		�� ���������� 	����� �������
	��� ����

23* �

"#$# %��& �� �!# ' ()���� $� ���������� *++ ,-��*. ��/��

339

J��� @1
4 ���5� 	�� ���	 �
	
 5�	��	 	��

���� 	����� 6�		���
�� J��� @1�4 ���5� 	�� ���	
�
	
 5�	�
 	����� 6�		�� ��): ��� 2�� 	����� 6�		��
�� ��
����
	 ��
'0	�0��
' %
���� J��� C1
4 ���5�
	�� ��� ��
��
� �� 	�� �	�	 ���� 	�� 23*

5�	��	 	�� ��� ����	 ��6��	���� ����
��� 5�	�
J��� @1�4� J��� C1
4 ���5� 	�� 	����� 6�		�� �� 	��
���	 �
	
 ��
�
	��
��� ���������
�	�� �
�����
	����� 	�� 23* � K�5�%��� 	�� �	�	 ���5�
���� ��	���	��� �
	��
�� �
��� ��	����	� ����� ��

J��� @� 2�� ��� ��
��
� �� 1
4 �����
	�� �
	
 ����
�
�	�� ����
	��
�� 1�4 �
	
 ����
� 5�	� 	����� 6�		��
�����

J��� C� "������
	�� ����
� 1
4 5�	��	 ������ ����	 ��6��	���
�� 1�4 5�	� ������ ����	 ���
����� /3* �
����� ����%����

J��� =� /����
	�� ��	� �� ��	��
� �������
	��� ���� 23* �

"#$# %��& �� �!# ' ()���� $� ���������� *++ ,-��*. ��/��

340

	� 	�� �
		��� ��������	 �7��	� 2� ������
	� 	��):
�� �� 	����� 6�		�� �� 	�� ���	 �
	
� 	�� �5�	�����
5����5 �� 	�� 23* �� ��	 	� @. ��� 2�� /3*
�����	 �� ��	 	�)E, �*�
�� 	�� �
����� ����%���
�
	� �� ������ 	�
�),, ��� J�� J��� C1
4� 	�� �
	

����� ��	����� 	�� ���	��� ���	 �� 23* �
%�
���� ������ �� =,, �#� ��	� ��� ����	 ��6��	���
�� �,�9 ���� 	�� �������
	�� ����
� �� ���5� ��
J��� C1�4� ����
���� J��� C1
4
�� 1�4� 	�� �
		���
��������	 �7��	 �� ��
�
	��
��� ��������� ��
��� ����	 ��6��	����
�� ��	� B���� ���5 ����0
��
	��� �� ���	 �
	
 	����� 6�		��� $� 	�� ��
����
��" ��%�� �� J��� .� 	���� ��
 ��" M���
	

����),�. ��� 	�� �������
	��� 5�	��	 ������
����	� 5����
�),�), ��" ��
����%�� 5�	� 	�� ��0
6��	��� �� ������ ����	�
2� �����	
�� 	��
���	 �� �������	 �
	

	����� 6�		�� 	�� 23* �
� ����%�� 5� ��
���
	�� �	�	 ��"
	 ��7����	 ���	 	����� 6�		��

����	���� J��� : ����
��� ��" ��%�� ����
	���� ��7����	 	����� 6�		�� %
���F),�):
�� +) ���

�� 5�	� �� ��6��	��� ��5�� �� �,�9 ���� 2�� ����
�� 	�� �5�	����� 5����5 ���
����
	 @. ��� 2��
��5�� ���
�	� �����
���
�������
	��� ,�C �� ��
	�� 	����� 6�		�� �� ������ ����): 	�), ��� ����
5� �����
�� 	�� 	����� 6�		�� 	� +) ��� 	�� ��"
��%� ����
��� �����B�
�	�� ��� 	�
	
 ��" M���

���
�� ��
�),�E� J��� J��� +� 5� �
� ��� 	�
	 	��
	����� 6�		�� �� 	�� �������	 �
	
 ����� 	�
���
	��

	�
 	����� 6�		�� �� 	�� 23* �5�	����� 5����5�
J��� E ���5� 	�
	 5��� 	�� 	����� 6�		�� ������� 	��
�5�	����� 5����5 ���� �� 	�� 23* � 	�� ������
	����� 6�		�� 5��� �� ���%��	�� 	� ��	����	� �����
	
	�� �	�	�
���� 	�� 	����� 6�		�� �� 	�� �������	 �
	

����� �� 5�	��� 	�� 	����
��� �� 	�� �������
	���
�
�
����	� �� 23* � 	���� ��
 �����	 ��7������ ��
��5�� ���
�	� ��� ��7����	 	����� 6�		�� ���	�
*� ���5� �� J��� +� 	�� ��
��
�� ���� �� �5�	��0

��� 5����5 �� 	�� ��	��
� �������
	�� �� ���	��
� 	�
	�� �������
��� �� 	�� �������
	���� ���� 	��
���	��� ���� �� �
���5� 23* �
�
 �<
��0��'�
�5�	����� 5����5 5�	�
 M
	 	�� >)@A� J��� 9 ���5�
	�� ��" ��%�� ���� ��7����	 �5�	����� 5����5
�����F @.� @,
�� =+ ��� 2�� ������ ��
� �� '��	

	 	�� ��5�� ��%�� �� �,�9 ����
�� 	�� ���	 �
	

����� �
%�
 	����� 6�		�� ��), ��� ���� 	��
5����5 ���� �� �����
���� 	�� ��5�� ���
�	� ��0
���
���� J�� 	�� 5����5 ���� �� =+ ��� ����� M���
��
�),�@
���
��� J�� ��	��
� �������
	����

5���
�� M
	 5����5 5��� �����
�� 	�� �������
0
	��� �
�
����	�� K�5�%��� 	�� �
���
� ���� �� 	��
5����5 �� ����	�� �� 	�� ��	 �
	� �� 	�� �������	
�
	
� �	���5���
� �%���� �
��� 5����5 5��� �
��
�����	
�' ��	5��� ����������� ��	��

J��� .� ;�
���� ��" 5�	�85�	��	 ������ ����	�

J��� :� ;�
���� ��" ���� ��7����	 	����� 6�		�� �� 	�� ����0

���	 �
	
 ������

"#$# %��& �� �!# ' ()���� $� ���������� *++ ,-��*. ��/��

341

�	 �����������

$� ��
�	��
�
�����
	����� 	����� 6�		�� ��
 �
�0
��� ������� 5���� �
�
 �����B�
�	 ��M���� ��
	�� ���	�� �������
���� �7����	 ���	��� 5��� ��0
�������� 	����� 6�		��� 5�	� ��7����	
����	����
���<�����
�� ���	���	��� ���	����� $� �� ��0
�������	�� 5� ��
 ��5 ���<���� ���
'�� 	�
��
��	���
� 	����� 6�		�� 	� 	�� �
	
 ����
�� 5����
���%����
 ������ �	 �N����	 5
� 	� �	�� 	��
�������
��� ��
� ��	��
� �������
	�� ����� 	��
��
' 6�		�� %
�� �
� 	�� �
�� ��M���� �� 	�� ��0

�����
	�� ����
�� $�
���	���� �� ���
����� 	��
/3* ����%��� �
	� �� 	�� 23* 	����� �� ��0
6��	���� 	�� �
		��� ��������	 �7��	 �� ����������
2���
���5� 	�� 23* 	� �������
	� �
	

),
&�8�
�� ������� (��%��� ����	� �������� �� 	��
23* �������
���� ������	�
	�� 	�
	 �	 ����
����	����� 32 ; �
	

	 ������ �� +C, &�8�
��
������ >CA� 2�� ��7������ ��	5��� ���� 	�� 23*

�
 �������
	��
��
�
 ����	������� �� 	�� ��	��
����	 �� 	�� �
	
� $� ����	��������� 	�� ����0�����
��	������� �
	
 �� ��6��	�� ��	� 	�� ���	 ���	 ��
	�� 23* ���	�
� �� 	�� ���	��� ���	�
�� 	�� �
	

��5��
	 	�� ���	 ���	 �� ��
�� �� ����
����� 5�	�
	�� �
	�
	��� ��5�� �� 	�� /3*� 2�� �	���� ����'
���� ��	��� 	�� 23* 	����� 	�� ���	��� ���	�
K�5�%���
� 	�� ����' ���� ���	
��� �� �
	

��
	�������� ��
�����
	�� �
		���� �
		��� ��������	
�7��	 ���� ��	 ����
 ������� ��� ����	���������
2�� ��	�� ����	 �� 	�� �
	
 �� ��%����� ��� 	�� �
��
�� ��	��
� �������
	���� $� ��	��
� �������
	���� 	��
�
	
 ���� ��
����B��
�� ��6��	�� ��	� 	�� ���	���
���	 �� 	�� 23* � ���
�� �� 	�� ������ ��5��
��<���� 	� ��
��� 	�� �
����� ����
	��� 	� ���0
%��� 	�� � ��
�� ����	� 	�� ���	 �
	
 ��%�� ���� 	�
�
		��� ��������	 �7��	� �� 	�� ��	 �
	� �� ����
0
�
��� 	� 	�� /3* ����%��� �
	�� �������� 	��
23* 5����5 	�
�������
	� 	�� 	����� 6�		��
��<���� 	�
	 	�� /3* ����%��
	
� �%�� �
�	�� �
	�
	�
� �����
�� ����
	��� �����	�����
$� 	��� �
���� 5�
�
����� 	�� �������
��� ��

	�� 23*
), &�8� 5�	� �� ��6��	��� 	� ��0
�
��� 	�� /3* ����%��� �
	�� 2�� �������
��� ��
	�� 23*
	 ��7����	 	����� 6�		�� %
���
� 5���

J��� E� ������ 	����� 6�		�� �
� �� ���%��	�� 	� ��	����	� ������

J��� 9� ;�
���� ��" ���� ��7����	 �5�	����� 5����5 ���� ��

23* �

"#$# %��& �� �!# ' ()���� $� ���������� *++ ,-��*. ��/��

342

� ��7����	 �5�	����� 5����5 �����
�� ��
����
���� ��" ��%��� 3� ����	� ���5 	�
	 	�� 23*
�
� �������
	� 	�� ����
�
), &�8� ������
	���
	����� 6�		�� ��): ��� ����
 �� ��6��	��� ��5��
�� �,�9 ����

���������������

2��� 5��' 5
� �����	�� �� *"(* D&$
�����
�� J=,.,+0,,0+0,C,)� 2��
	���� 5���

��� ��'� 	� 	�
�' &�O� ��
�� �� 2�������
 2���0
���������
� ���5�
�� *�
� ���'� �� ;�	����'
2��������� ��� 	���� �����	 �� 	�� ���������	��

����������

>)A ;� �����	� �� (������ K�&� ������ /�*�3;F �������0

��	�� �
���
����B�� ��
 ���� ������� #���
� ��

����	5
%� 2���������)= 1),4 1)99C4 +,99?+)))�

>+A #�(� /�'���7� (�"� (���
�� $� &���'� ;� O
��� * 	��
���	�

��	��
�
�����	��� ����	������� 123* 4� (��	���� 2���0

������ ��		��� C 1:4 1)99=4 :E:?:9,�

>=A /� J������� ;� �'� �� &
����� �� ���	� �� &���� K�

;�������� �� K���'��� � D����	� *� � ������ 3�	��
� ="

�������
	�� ��� @, &��	8� ��	5��'�� ����	������ ��		��� =C

1+=4 1)9994 +,@:?+,@9�

>@A �� ������� #��� /����� �� O�5
��'�� ;� K����� &� ;���
��

(� �
������ J� *�
��� +, &��	8� 3�	��
� =" "������
	��

���� /3* �
��� ;
��?!������ $�	��������	�� &
	��

��3�)99:� ��� +.9?+:)�

>CA $� &���'� (�"� (���
�� +C,0&�8� ���� ����'�� ��	��
� 2 ;

5�	�
 ���
���
	���0��	������� ����'� J����
�� $�	���
	��

3�	���)@ 1)99C4 :)?E+�

>.A O��� ���� "�#� "����� $� &���'� (�"� (���
�� /�����0

���	 ��	��
� �
������ ������������ ��� �	�
�
�	 ��	��
�

5
%������� (��	���� 2��������� ��		���), 1=4 1)99E4

=9:?=99�

>:A (� 2���%��� $� &���'� "�#� "����� O��� ���� O�$� O
���

(�"� (���
�� P�	�
�
�	 ��	���� �
�'�	0�5�	���� ��	��
�

	���0��%����� ��	��������F ��������	�
�� ���	���� 3�0

	��
� ����������� =: 1)+4 1)99E4 =)E:?=)9C�

>EA *�#� (��	��� *��� O����� "�#� ;
������ O�#� ���5� *��0

��	��
� �������
	�%� ������ 5�	� ��� 5��	�8��
� �
�
����	��

3�	��� �������
	����)C@ 1)99E4 +::?+E)�

>9A "�#� ;
������ �*�3�
%���� 2����05
%�����	� ��%���

���
��0��	��
� ����
� ����������� 3�	��� ��		���)9 1)+4

1)99@4 EE9?E9)�

>),A "�#� ;
������ *� � ������ *�#� (��	��� O�#� ���5� /���0

�����	�� �
���
����B��� ��� �	�
�
�	
��0��	��
� ����
�

����������� #���
� �� 	�� 3�	��
� /����	� �� *�����
 �)@

1))4 1)99:4 =+,@?=+).�

>))A *� � ������ �;� (
	���'� � J�
������ "�#� ;
������

 �*�3�
%���� �;� /����	� P�	�
0����0����� 32 ;

��	5��'� ���� ���������	��
����B��0�
��� ����������

������ #���
� �� ����	5
%� 2���������)= 1C4 1)99C4 :.)?

::,�

>)+A O� $���� ;� Q������� &
�� ���
���� ��
 �
	�
	��

���������	�� �
���
����B�� 5�	�)�@: �� � �������
(��	���� 2��������� ��		��� E 1@4 1)99.4 C,.?C,E�

>)=A ;� Q������� O� $���� $����%����	 �� �
	�
	��� �	�	

��5�� ��
 ���������	�� �
���
����B�� 	����� ������

����	 ��6��	���� (��	���� 2��������� ��		��� E 1)4 1)99.4

CE?C9�

>)@A (� 2���%��� "�#� "����� $� &���'� (�"� (���
�� ����
��0

��� �� 	���� �������
� ��	��������	��� ��	��
� �5�	��

�����	����� 3�	��� �������
	����):C 1+,,,4 =.C?=:=�

"#$# %��& �� �!# ' ()���� $� ���������� *++ ,-��*. ��/��

343

acta physicaslovacavol. 51 No. 2, 151– 162 April 2001

NEW GENERATION OF DEVICES FOR ALL-OPTICAL COMMUNICA TIONS

I. Glesk
Departmentof Optics,Facultyof MathematicsandPhysics,ComeniusUniversity, Mlynská

dolina,F-2,84248 Bratislava,Slovakia

R. J. Runser, P. R. Prucnal
Departmentof ElectricalEngineering,PrincetonUniversity, Princeton,NJ 08544,USA

Received18 September2000,in final form 3 January2001,accepted4 January2001

To increasethe transmissioncapacityof future communicationnetworks is becomingvery
critical. This taskcanonly beaccomplishedby takingadvantageof opticalnetworkswhere
multiplexing techniquessuchasDenseWavelengthDivisionMultiplexing (DWDM) andOp-
tical Time Division Multiplexing (OTDM) areemployed. To avoid electronicbottlenecksa
whole new generationof ultrafastdevices is needed.To fulfill theseneedsa new classof
all optical deviceshasbeenproposedanddeveloped. By taking advantageof the nonlinear
dynamicsin semiconductoroptical amplifiersin combinationwith the fiber interferometers
a new generationof ultrafastall-optical demultiplexersandwavelengthconvertershasbeen
demonstrated.Other switching technologiesare also promisingfor the future. The latest
technologiesin the areaof micro-machininghave createdvery attractive low costMEMS.
Recentlyannounceduseof bubbletechnologyfor all-opticalswitchingmightalsoleadto the
developmentof next generationlargescaleswitchingfabrics. This paperis an overview of
therecentdevelopmentin theseareas.

PACS: 42.79.Sz,42.79.Ta

1 Intr oduction

Theexplosivegrowth of theInternethasplacednew demandson thebandwidthof thephysical
transportlayerof thebackbonenetwork. While optical technologyhasbegunsatisfyingthede-
mandwith highbandwidthdensewavelengthdivisionmultiplexed(DWDM) point-to-pointlinks,
switchingandroutingpacketshasbeenperformedusingelectronichardware.Althoughelectron-
ics is sufficient for packet routingtoday, thetremendousgrowth in datatraffic predictedover the
next 5 yearswill pushelectronicsto its fundamentallimits. Currentelectronicsthatswitchand
routepacketson theInternetrely uponintegratedsilicon (Si), gallium arsenide(GaAs),andin-
dium phosphide(InP) devices.Froma physicsperspective, it is not likely that thesetechnology
will achieve terahertzspeedneededfor switching in the future Internet. New techniquesare
neededto alleviate the potentialelectronicbottleneck. It appearsthat optical technologywill

0323-0465/01 c
�

Instituteof Physics,SAS,Bratislava,Slovakia

344

I. Glesk et al.

be the only technologycapableof achieving multi-terabit/secondcommunications.For future
generationsof opticalnetworksto utilize thefull bandwidthof opticalfiber, weexpectdatarates
on eachindividual channelin DWDM networks to exceedthe practicalbit-rateof the driving
electronics.To accommodatesuchhighdatarates,individualwavelengthchannelsmaybecom-
posedof modulated,picosecondmode-locked laserpulsesfrom eachdatasource. Thesenew
systemswill opticallyaggregatetraffic from many usersinto unique,closelyspacedtimeslotsto
achieve extremelyhigh datarateson eachwavelength.By utilizing optical time division multi-
plexing (OTDM) technologies,thecontinuedgrowth in capacityof fiber optic networkscanbe
assured.Recentadvancesin OTDM haveproventhis technology’stremendousability to perform
highbandwidthswitchingamongalargenumberof portswhile offeringaggregatecapacitiesthat
exceedcurrentelectronicswitchedrouters. Researchgroupsthroughoutthe world have begun
exploringOTDM all-opticalswitchingtechniques.

2 All-optical devices

All-optical switchesand demultiplexers are fundamentalbuilding blocks for enablingfuture
OTDM systems[1]. Semiconductoropticalnonlinearitieswith long recovery times(� 100ps)
have beenusedto demonstrateefficient interferometricall-optical devicesthat promiseto de-
liver switchinganddemultiplexing on terabit/sdatastreams.Thesenonlinearitiesaretypically
basedupona resonantexcitation in actively-biasedopticalamplifiersor passive semiconductor
nonlinearwaveguides.Extensiveexperimental[2-7] andtheoreticalanalysis[7-11] hasbeenper-
formedon variousinterferometricconfigurationsof thesedevices.Dueto their compactdesign,
many of theseswitch architectureshave beenintegrated,indicating their feasibility for future
communicationsystems[12-17]. Opticalnonlinearitiesin semiconductorsarea very promising
areafor developingultrafastandefficient opticalswitches[1]. Opticalswitchesusingactively-
biasedsemiconductoropticalamplifiers(SOAs) asthenonlinearswitchingelement,have been
usedto demonstrateswitchingin systemsusinglow controlpulseenergy (250fJ) [18]. Although
passive deviceshave demonstratedthe shortestswitching windows to date(� 200 fs) [3], the
passive bandfilling effect typically requiresmore optical control energy than actively- biased
SOAs. Gain saturationinducedbandfilling in active SOAs is enhancedby stimulatedemission
andthereforerequireslower controlpulseenergy to generatesufficient nonlinearityfor switch-
ing [16]. Also othersub-picosecondnonlinearitiesin semiconductorscanbeexploitedto achieve
ultrafastswitching[1] andall-opticalmodulation[19].

2.1 Interfer ometric devicesfor all-optical processing

Interferometricdevicesfor opticalprocessinghavebeenof greatinterestto theresearchcommu-
nity for sometime [20] andgainedmomentumin theresearchcommunitywith thedevelopment
of nonlinearoptical loop mirrors (NOLMs) [21-23]. Thesedevices,which simply consistof a
2x2couplerandalong loopof fiber formedby joining thetwo fibersof oneof thecoupler’sends
together, rely uponweaknonlinearinteractionsbetweenacontrolandasignalpulseasthey both
co-propagatearoundthe loop. If the nonlinearinteractionis sufficiently large,a phaseshift in
thesignalpulsepropagatingwith the controlpulsecanbe inducedwith respectto the counter-
propagatingsignalpulsewhichdoesnot travel with thecontrolpulse.Thechangein phasealters
theinterferenceconditionat thebaseof theloop whenthesignalsrecombineat thecouplerand

345

New generationof devicesfor all-opticalcommunications

switchesthe signal to the outputport. Signalsenteringthe loop in the absenceof the control
pulse,do not experienceanappreciablephasechangeandarereflectedbacktowardthesource.

The switchingwindows for NOLMs canbe madevery shortasthey typically only depend
uponthecharacteristicsof thecontrolpulseandtheresponseof thenonlinearity. Indeed,switch-
ing experimentswith temporalwidths of 620 fs have beenachieved [24]. However, NOLMs
dependupona weaknonlinearinteractionin thefiber which usuallyrequireshigh controlpulse
energies(� 1 pJ)andlong fiber loop lengths(� 100m) to generatea significantphaseshift. Al-
thoughtherearemany techniquesto reduceboththecontrolpulseenergy requirementsandloop
lengths[23,25], practical,compactdevicesfor commercialopticalcommunicationsystemshave
yet to berealized.

Findinga techniqueto reducethecontrolpulseenergy andfiber lengthsrequiredin NOLMs
relieduponusinga nonlinearmaterialotherthanfiber. Many groundbreakingexperimentswith
semiconductoroptical amplifiers(SOAs) insertedinto the loop demonstratedthat low energy
optical pulsescould changethe gain of the amplifierssufficiently to producesignificantphase
shiftsin subsequentpulsespassingthroughtheamplifier[26]. As theseintegratedsemiconductor
amplifierswereveryshort(� 1 mm)they becameapracticalalternativeto generatinganoptically
inducednonlinearity. Additionally, the temporalonsetof the phaseshift wasnearlyasfastas
the rising edgeof the control pulse[27]. Unlike non-resonantfiber nonlinearity, however, this
resonant,interbandnonlinearityin thesemiconductormaterialhasa longrelaxationtime(100to
500ps). Efforts weresoonunderway to form a new classof switchingdevicesbaseduponthe
efficient resonantnonlinearityin SOAs to inducea differentialphasechangebetweenthe two
signalpulsescounter- propagatingin thefiber loop. Thefirst device developedwasknown asa
semiconductorlaseramplifierin a loopmirror (SLALOM) andwasusedto investigate”contrast
enhancementandopticalcorrelation”[28]. Althoughtherising edgeof the temporalswitching
window wasafew picoseconds,thewindow’sfalling edgedependeduponthegainrecoverytime
of theSOA whichwasapproximately400ps[28].

The last innovationto producepicosecondswitchingwindows with SOAs wasanarchitec-
tural realization.It wasdiscoveredthatthetemporaldurationof thewindow couldbecontrolled
by changingtheasymmetricplacementof theSOA. Due to thedynamicsof this configuration,
theswitchingwindow actuallyclosesearlier thanthe recovery time of the SOA asthe SOA is
movedcloserto themidpoint. Fig. 1 shows a schematicdiagramof this device known asa Ter-
ahertzOptical AsymmetricDemultiplexer (TOAD) [2]. In the absenceof a control pulse,data
pulsesenterthe fiber loop, passthroughthe SOA at differenttimesasthey counter-propagate
aroundthe loop, and recombineinterferometricallyat the coupler. Sinceboth pulsesseethe
samemediumasthey propagatearoundtheloop, thedatais reflectedbacktowardthesource.In
thepresenceof thecontrolpulse,switchingcanoccur. Whena controlpulseis injectedinto the
loop, it saturatesthe SOA andchangesits index of refraction. As a result,a differentialphase
shift canbeachievedbetweenthetwo counter- propagatingdatapulsesto switchthedatapulses
to theoutputport. Only thepulsesthatco-propagatewith andtravel justbehindthecontrolpulse
by up to twice the optical path lengthof the SOA offset areswitchedto the outputport. All
subsequentpulseswill eitherseean unsaturatedamplifieror a slowly recoveringamplifierand
will bereflectedbacktowardthesource.A polarizationor wavelengthfilter is usedat theoutput
to rejectthe controlandpassthe switcheddatasignal. The temporaldurationof the switching
window is determinedby the offset of the SOA, ��� , from the centerpositionof the loop. As
this offset is reduced,theswitchingwindow sizedecreases.Thesizeof the nominalswitching

346

I. Glesk et al.

window duration,�
	��� , is relatedto the offsetpositionby �
	����������������������� � (where �!�"����� � is
thespeedof light in fiber).

∆

Fig. 1. Schematicdiagramof ultrafastall-opticaldemultiplexers:a) TheTOAD; b) CPMZandSMZ.

By preciselycontrolling the offsetpositionof the SOA, very shortswitchingwindows can
beachieved. Demultiplexing of a singlechannelfrom a 250-Gb/sdatastreamhasbeendemon-
strated[29]. The practicalcontrol anddatapulseenergy requirementsmake it well-suitedfor
typical communicationsignalpowers. As the sizeof the device only dependsupon the SOA
lengthandoffsetfrom thecenterpositionin theloop,compactTOADs basedupondiscretecom-
ponentshave beenconstructedwith loop lengthsof lessthan0.5 meter. The TOAD is robust
to temperaturevariationsandcanbereliably operatedwithout stabilizationasdatasignalsprop-
agatingin both directionsaroundthe loop experiencethe sameeffective medium. This device
and its other variationsmay prove to be a practicalapproachto all-optical switching as they
canbe integratedusinga varietyof techniquesthat arediscussedin this Section2.2. The first
experimentsto evaluatethe performanceof the TOAD consistedof aggregatingseveral pulses
in time to form an ultrafastOTDM frame. Typically onepulsein the middleof the framewas
modulatedwith apseudorandomdatapatternwhile theneighboringpulseswereall setto 1. The
demultiplexerwasusedto selectedthemodulateddatasignalfrom theultrafasttime frame.The
first experimentdemonstratedthe TOAD’s ability to switch pulsesfrom a 50 Gb/stime frame
to a basebandrateof 1.25 Gb/s [2]. This wassubsequentlyfollowed by a 250 Gb/sdemulti-
plexing experiment[29] anderror-freedemultiplexing from a continuous160-Gb/sdatastream
[33]. Notablein all of thesedemonstrationswasthelow controlpulseenergy (� 1 pJ)neededto
performthedemultiplexing function.

AlthoughtheTOAD is basedupona Sagnacinterferometer, otherinterferometricconfigura-
tionsarepossibleusinga similar operatingprinciple.Thesearchitecturesimprovetheintegrata-
bility andperformanceof thedevicealthoughthey mayrequireactivestabilizationif constructed
from discretecomponents.Two variationsof theswitchin a Mach-Zehnderinterferometercon-
figuration are shown in Fig. 1b. In the absenceof the control signals,the Mach-Zehnderis
balancedso that datasignalsarerejectedat the outputport. Whencontrol pulsesare injected
into the interferometer, a differentialphaseshift is briefly introducedbetweenthe two armsof
theinterferometercausinga datapulseto beswitchedto theoutputport. Similar to theTOAD,

347

New generationof devicesfor all-opticalcommunications

subsequentdatapulsesthatpassthroughtheswitchseetheslow recoveryof bothSOAs andare
rejected.Thedifferencesbetweenthetwo Mach-Zehndergeometriesshown is with respectto the
propagationdirectionof controlanddatasignals.In theColliding PulseMach-Zehnder(CPMZ)
shown in Fig. 1b, thedataandcontrolsignalscounter-propagatethroughtheinterferometer. As
a result,a filter is not neededat theoutputto rejectthecontrol,andthecontrolcanbecoupled
into the interferometerwithout introducingadditionalcouplinglosses.The nominalswitching
window for the CPMZ is determinedby the distancebetweenthe midpointsof the SOAs such
that � 	��� �#��������� �"����� � . Theotherarchitectureknown astheSymmetricMach-Zehnder(SMZ)
shown in Fig. 1b requiresa filter at theoutputport to rejectthecontrol from theswitcheddata
signalsincedataandcontrol signalsco-propagate.Assumingthe SOAs arepositionedin the
samerelative locationwithin the interferometer, thenominalswitchingwindow for theSMZ is
determinedby the temporalcontrol pulseseparation,��$, of Control 1 andControl 2 prior to
enteringthe interferometersuchthat � 	��� ����$. Althoughthenominalswitchingwindow size
providesanestimateof theswitchingwindow temporalduration,it doesnotaccountfor thefinite
lengthof theSOAs. While theSOA lengthhaslittle effect on theSMZ geometry, theminimum
achievableswitchingwindowsfor boththeTOAD andCPMZareconstrainedby thelengthof the
SOAs [7, 8]. Many theoreticalmodelshavebeendevelopedto understandtheultrafasttemporal
responseof SOAs [27, 30-32]andthecharacteristicsof theseopticalswitches[7-11].

With the successfuldevelopmentof all-optical demultiplexing, many new techniqueshave
beenusedto enhancethe performanceof thesedevices. As the optical switching function is
basedupon gain saturationin an SOA, the repetitionrate of the demultiplexing operationis
somewhatlimited by therecovery time of theamplifier. Novel opticalbiasingtechniquesusing
CW light have significantly reducedthe recovery time [34]. It hasbeenestimatedthat these
techniquesmay enablethe optical switch to function at repetitionratesapproaching100 GHz
[35]. Otherdemonstrationshave shown that theTOAD canbesuccessfullyusedto demultiplex
many wavelengthssimultaneouslyfrom anaggregatedOTDM/WDM datastream[36].

Gain-Transparent SOA-Switch Dual wavelengthoperationof the TOAD/SLALOM config-
urationknown asthe Gain-TransparentSOA-Switch (GT SOA-Switch) hasbeenproposedand
demonstrated[37]. Thisdevice (Fig. 2) usesadatasignalata longerwavelength(1.55 % m) than
thecontrolsignal(1.3 % m) sothatit is far from thebandedgeof theopticalamplifier. Thetech-
niqueenhancesthesignal-to-noiseratio of thedevice andcanimprove theswitchingcontrastat
theoutput. TheGT SOA-switch hasbeensuccessfullyappliedasanadd/dropmultiplexer [37]
andto simultaneousdemultiplexing of severalwavelengthchannelsfrom anOTDM/WDM data
stream[38]. On otherhanddualwavelengthoperationof sucha switchcouldbe to difficult to
implementin therealopticalnetwork.

Ultrafast Nonlinear Interferometer (UNI), developedat MIT Lincoln Labs,is anotherultra-
fastall-optical OTDM switch usingan SOA asthe nonlinearelementin a single-arminterfer-
ometer[4] (Fig. 3). By usinga long lengthof Birefringent(PM) Fiber to separateorthogonally
polarizedcomponentsof datapulsesin time,acontrolpulsecanbeintroducedpreciselybetween
the componentsof a datapulse. Whenthesecomponentspassthroughthe SOA, only the data
pulsewhosecomponentsareseparatedby thecontrolpulsewill experiencea differentialphase
change.As a result,whenthepulsesarerealignedby anotherlong lengthof PM fiber, thecom-
ponentswill interferewith eachother. Only the pulsewhich experiencesthe differentialphase
changeinducedby the control pulsewill be passedto the Outputthroughthe PolarizationFil-
ter (PM Filter). Although the TOAD/SLALOM andthe UNI shareseveral characteristics,the

348

I. Glesk et al.

GT SOA-Switch

1.55µm

Transmitted Data

Control

² x

2x2

1.3µm SOA

WDM
coupler

In Out

1.3µm

In

DeMux

Optical
circulator

 Control

Data

∆

Fig. 2. GT SOA-Switch in Sagnac-interferometerTOAD/SLALOM configuration.

Fig. 3. Schematicdiagramof UltrafastNonlinearInterferometer(UNI).

integratabilityandpracticalityof theUNI arelimited by thelong lengthsof PM fiber neededto
inducethepolarizationwalk-off.

The switchingwindow of the UNI is determinedprimarily by the birefringenceof the PM
fiber usedto separateorthogonallypolarizedcomponentsof the datapulsesin time. Enough
walk-off is requiredto insertacontrolpulsebetweenthesetwo pulses.At aminimum,thewalk-
off shouldbe longerthanthe control pulsewidth. Like any otherSOA basedswitch, the UNI
is limited by intrabandcarrierdynamicsandcarrierheating.Switchingwindows of about1 ps
canbeexpected.Theswitchingrepetitionratecanbelimited by thecarrierrecombinationtime
in the SOA. However, 100 GHz repetitionratesfor bitwise logic functionshave beenreported
[39]. As with any SOA-basedswitch,theUNI alsohasanoisebackgroundaddedto theswitched
signaldueto spontaneousemissionfrom theSOA. Noisefiguresin therangeof 6 dB aretypical
for SOAs. Filtering andother techniquescanbe usedto reducethe accumulationof noisein
the signal for cascadeddevices. Sincethe UNI requiresat least15 m of PM fiber to produce

349

New generationof devicesfor all-opticalcommunications

the switching window [4], it is not likely that it will be easyto integrate. Sincethe UNI is
dependentuponbirefringenceto achieve switching,thesystemmustuseextensive polarization
controlthroughoutthenetwork to maintainreliability.

Nonlinear Waveguide (NLWG) Switch. Recordbreakingopticaldemultiplexing hasrecently
beenreportedby agroupatNECResearchworkingonadeviceknown asanonlinearwaveguide
(NLWG) switch.Thegroupachieved1.5Tb/sdemultiplexing with a200fs switchingwindow at
a repetitionrateof 10 GHz [3]. Thedevicesusesa Mach-Zehnderinterferometerconfiguration
andpassive semiconductorwaveguidesspatiallyoffset within the armsto produceswitching.
This approachis very similar to the SMZ-TOAD configurationexcept that the semiconductor
nonlinearwaveguidesarenot actively biased.The NLWG switch usesdataandcontrol pulses
sufficiently separatedin wavelengthto producea bandfillingeffect in thesemiconductorwaveg-
uide. First, an interferometeris built using NLWGs in the arms(this may include a Sagnac,
Mach-Zehnder, or evensingle-arminterferometerlike theUNI). Whena controlpulseis intro-
ducedinto thedeviceatanappropriatewavelength,it is absorbedby theNLWG. Theabsorption
createsan instantaneousrefractive index changein the materialthroughthe bandfilling effect.
Subsequently, datapulseswhich traversetheNLWG immediatelyafterthecontrolpulsecanex-
periencea differentialphasechangeneededto produceswitchinganddemultiplexing. Thedata
andcontrol pulses,which have differentwavelengths,areseparatedat the outputof the device
usinga bandpassfilter. Theswitchingwindow achievedin themostrecentdemonstrationof the
NLWG switch is the shortestto date(� 200 fs). The small temporalwindow is a resultof the
nearlyinstantaneousindex changeof thesemiconductormaterialfrom thecontrolpulse.Unlike
active SOA-baseddemultiplexers,the NLWG is a passive structurewhich doesnot exhibit in-
trabandcarrierdynamicsor carrierheating.Thenonlinearresponsecanbealmostasfastasthe
rising edgeof the control pulse. Thecontrol pulseenergy requirementof theNLWG device is
oneof its major limitations. SincetheNLWG is passive, a significantamountof photonsmust
beabsorbedin thematerialto achieve an adequatephaseshift for switching. For the InGaAsP
waveguidesat 1.55 % m, a controlpulseof nearly5 pJis required(afteraccountingfiber-to-chip
couplinglosses).To date,couplingefficienciesof only 10%have beenachieved. As a result,a
systembuilt with NLWG demultiplexerswould requirecontrol pulseenergiesof almost50 pJ.
Sincethe NLWG is passive, it is not likely that the control pulseenergy canbe reducedmuch
beyonda few tensof picojoules.This greatlylimits thedevice applicationto practicalsystems.
Noisefigureof a passiveswitchis typically not aproblemandestimatedto belessthan2 dB for
thesedevices. Switchingrepetitionratesof 40 GHz have beenexperimentallydemonstratedby
theNEC group[40].

2.2 Integration of All-Optical devices

We briefly review the progressthathasbeenmadein this area.While all of discusseddevices
presentedcanbeconstructedfrom discretecomponents,practical,high performanceall-optical
switchesfor commercialsystemswill most likely take advantageof photonicintegrationtech-
nology.

Integrated all-optical switches. The Sagnac,Mach-Zehnder, andMichelsoninterferometer
all-opticalswitchgeometrieshave beenintegratedby variousgroups.In orderto fabricatethese
devices,bothmonolithicandhybrid technologieshave beenused.Thefirst monolithically inte-
gratednonlinearSagnacinterferometercapableof demultiplexing from 20 Gb/sto 10 Gb/sor 5

350

I. Glesk et al.

Gb/swasdemonstratedby the HeinrichHertz Institute(HHI) in 1996[12]. Both the colliding
pulseMach- Zehnder(CPMZ) andsymmetricMach-Zehnder(SMZ) geometrieshave beenin-
tegratedandsubsequentlydemonstratedashigh-speeddemultiplexersby many groups[13-16].
AlthoughtheMach-ZehnderconfigurationrequiresadditionalSOAs andcouplersascomparedto
theSagnacdevice, theMach-Zehnderstructuresaremorepracticalto fabricatesincethey donot
requirea large loop radiuswhich may leadto bendinglossesin the waveguides.Furthermore,
the SMZ hasthe inherentadvantagethat it exhibits the shortestswitching window in the co-
propagatingconfiguration.Finally, anSOA-basedopticalswitchusinganintegratedMichelson
interferometerwasusedto demonstratedemultiplexing from 20 to 5 Gb/s[17]. TheMichelson
configurationmay be a practicalapproachto integratedswitchingasanti-reflectioncoatingis
only appliedto onesideof thedevice andonly two fiber-to-chipcouplingsarenecessaryfor its
operationasademultiplexer [17].

Thehighestperformancefor demultiplexing hasbeendemonstratedusingtheMach-Zehnder
structures.BoththeCPMZfabricatedby HHI andtheSMZ fabricatedby Alcatelhavebeenused
to optically demultiplex from 40 to 10 Gb/s [13, 14]. The Alcatel monolithic SMZ is an all-
activedeviceasall waveguidescontainanactiveSOA elementfabricatedon thesamesubstrate.
This device improvesthe optical power requirementsby providing additionalgain to account
for fiber-to-chipcouplinglosses.A high performancemonolithically integratedSMZ wasalso
demonstratedby a collaborationamongthe SwissFederalInstituteof Technology, University
of Denmark,andFranceTelecom. This groupachievedreliabledemultiplexing from 80 to 10
Gb/s[15]. The highestperformancefor an integratedSMZ to datehasbeenachieved usinga
hybrid techniqueemployedby NEC [16]. Fiber guidesandpassive silica waveguidesarefirst
fabricatedontoa silicon planarlightwave circuit (PLC). Theactive SOA arraychip is thenflip
chip mountedonto thePLC. Recently, NEC usedthis chip to demonstratedemultiplexing from
168Gb/sto 10Gb/s[16]. As integrationtechnologyin thisareacontinuesto mature,deployment
of high performanceopticalswitchesin commercialsystemsbecomespossible.

Integrated all optical wavelength converter. Wavelengthconversionis oneof thekey func-
tionswhichmustbeperformedin existingDWDM opticalnetworks.In currentopticalnetworks
in order to performconversionfrom wavelength &�' to wavelength &)(, an optical signalat &�'
mustbe first detectedby a photoreceiver, thenconvertedinto an RF signal. This RF signal is
now usedto modulatea cw DFB laserto generatethe requireddataat the new wavelength &�(.
Thisprocessis relatively slow andcreateselectronicbottlenecksin existingsystems.Thiscanbe
avoidedif wavelengthconversionis doneall-optically for exampleusingnewly developedInte-
gratedAll-Optical WavelengthConverter1901ICM from Alcatel. Fig. 3 is aschematicdiagram
of suchadevice. Thisconverterexploitscross-phasemodulationin anintegratedMach-Zehnder
(MZ) interferometerbasedon anall-active MZ-SOA structure.An input modulatedsignalat a
wavelength& ' modulatesthecarrierdensityin theSOA insideof theinterferometer, producing
a modulationof its refractive index. This in turn leadsto phasemodulationof an injectedCW
beamat the desiredoutputwavelength & (, which is convertedto amplitudemodulationvia the
MZ interferometer. Thesignaldatapatternis thereforetransferredto thenew wavelength&�(.

Thenonlineartransferfunctionof thedeviceallowsbothenhancementof thesignalextinction
ratioandcompressionof theopticalnoiseamplitude.

351

New generationof devicesfor all-opticalcommunications 159

Fig. 4. All-Optical InterferometricWavelengthConverter- schematicdiagram.

3 Opto-mechanicalswitching devices

While thepreviousanalysisin Chapter2 only consideredinterferometricbasedall-opticalswit-
ches,othermechanismsfor opticalswitchingarealsobeingpursuedvigorously. Themostcom-
monopticalswitchingfabricthatis currentlybeingintegratedinto commercialpacketswitching
systemsis baseduponmicro-electro-mechanicalsystemsor MEMS. Simpleembodimentsof the
MEMS technologyincludemovablemicro-mirrorsthat routebeamsof light accordingto their
destination. Early this yearAgilent Technologiesgaineda lot of attentionby announcingits
capabilityto usea bubbletechnologyfor optical switchingandrouting. Thesetwo promising
technologiesarediscussedin this section.

3.1 Movable Mirr or Ar chitectures

Oneof theleaderin MEMS technologytodayis LucentTechnologies.Lucentis poisedto offer
their first all-optical routing systemthis yearcalledthe WaveStarLambdaRouter. The Lamb-
daRouterusesa 256x256array of movable mirrors to direct light from one fiber to another.
Advantagesof the MEMS architectureinclude scalability, low power consumption,low loss,
compactsize,andprotocol transparency. Lucent’s currentsystemcansupportsinglechannel
dataratesashigh as40 Gb/s. MEMS offers a simplesolution to the optical switchingprob-
lem andavoids the electronicconversionrequiredin standardroutersbut the applicationsarea
is somewhat limited. SinceMEMS areinherentlymechanical,they are limited in speed.The
LucentLambdaRoutercanmove its mirrors only on a time scaleof 10 ms. While this is ap-
propriatefor opticalcircuit switchingandopticallayerrestorationprotectionswitching,it is not
nearlyfastenoughto supportswitchingon apacket-by-packetbasisrequiredby IP routing.Fur-
thermoreelectronichardwaremuststill beusedto obtaintherouting informationto control the
switch. Due to the mechanicalnatureof MEMS, long-termreliability andpackagingarestill
critical issuesin thesesystemsthat will be proved over time. Additional advancesin MEMS
will mostlikely beableto upgradethespeedof theseswitches.TheMEMS basedswitcheswill
mostlikely interconnectserviceprovidersandlargecities wherecontinuoustraffic streamsare
establishedfor longerperiodsof timebetweenfixedlocations.

3.2 Bubble Technology

Agilent Technologieshasbeena pioneerof ink-jet technologyfor low-costcolor printers.This
sametechnologyhasnow beenappliedto an all-optical switch fabric andcommercialsystems

352

I. Glesk et al.

are expectedby the end of year 2000. The currentprototypedemonstrationis a 32x32 all-
optical switching matrix. Thesenew photonicswitchesare basedon technologythat usesa
combinationof reliableinkjet andplanarlightwave circuit technologies.They accomplishthe
task of re-directinglight without the help of mirrors or any other moving parts. This switch
is composedof a vertical and horizontalarray of permanentlyalignedwaveguides. Light is
transmittedacrossa horizontalpath from the input to output port until a switch commandis
issued.Whencommanded,abubbleis createdat theintersectionof appropriatewaveguidesand
the light is reflecteddown a verticalpathto theswitchedport. This bubbleis formedusingthe
samereliabletechnologynow usedin inkjet printers. Like MEMS, bubbletechnologyhaslow
loss, format andprotocol transparency, andcompactsize. The bubble technologymay prove
to bemorereliablethanMEMS basedswitchessincethereis lessmoving partsinvolvedin the
switchingoperation.Little informationis availableaboutthecapabilitiesof thisnew, proprietary
technology. It is estimatedbaseduponthe ink-jet printing technology, that switching latency
will fall in the millisecondrange.TheAgilent switchmight find applicationsin optical circuit
switchingandopticallayerrestorationprotectionswitching.

4 Conclusions

Althoughelectronicshasmadegreatstridestowardsatisfyingtheswitchingbandwidthof future
communicationnetworks,it doesnot appearthatelectronicswitcheswill reachthetargetedter-
abit/secondregime even with the highestdegreeof parallelism. However, basedon presented
resultsthesenewly developingtechnologiesmight providea revolutionarybreakthroughin scal-
ability, bandwidth,reliability, and speed. In conclusion,Table I summarizesthe key device
parametersof thetechnologiespresentedin this paper.

TableI. Comparisonof four typesof opticalswitches.

Device Switching Repetition Control Pulse Noise Integrat.
Time Rate Energy (pJ) Figure(dB)

TOAD/SLALOM � 1 ps 100+GHz 0.25 6 YES
UNI � 1 ps 100+GHz 0.25 6 NO

NLWG 0.2ps 40+GHz 50 low YES
NOLM 0.8ps 100+GHz 50+ low NO
MEMS 10 ms � 1 kHz N/A N/A YES
Bubble 10 ms � 1 kHz N/A N/A YES

References

[1] O. Wada:Opt.Quant.Electron.32 (2000)453

[2] J. P. Sokoloff, P. R. Prucnal,I. Glesk, M. Kane: A TerahertzOptical AsymmetricDemultiplexer
(TOAD), OSAProceedingsonPhotonicsin Switching, (Eds.J.W. Goodman,R.C.Alferness)Optical
Societyof America,Washington,D.C.199316, PD-4;J.P. Sokoloff, P. R.Prucnal,I. Glesk,M. Kane:
IEEEPhoton.Technol.Lett. 5 (1993)787

353

New generationof devicesfor all-opticalcommunications

[3] S.Nakamura,Y. Ueno,K. Tajima:IEEE Photon.Technol.Lett. 10 (1998)1575

[4] N. S.Patel,K. L. Hall, K. A. Rauschenbach:OpticsLett. 21 (1996)1466

[5] A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning,D. A. O. Davies,D. M. Spirit: J. Lightwave
Technol.13 (1995)761

[6] M. Eiselt,W. Pieper, H. G. Weber:Electron.Lett. 29 (1993)1167

[7] P. Toliver, R. J.Runser, I. Glesk,P. R. Prucnal:OpticsComm.175(2000)365

[8] K. I. Kang,T. G. Chang,I. Glesk,P. R. Prucnal:Appl. Opt.35 (1996)417

[9] R. J.Manning,A. D. Ellis, A. J.Poustie,K. J.Blow: J.Opt.Soc.Am. B 14 (1997)3204

[10] N. S.Patel,K. L. Hall, K. A. Rauschenbach:Appl. Optics37 (1998)2831

[11] S.Nakamura,K. Tajima:Jpn.J.Appl. Phys.35 (1996)L1426

[12] E. Jahn,N. Agrawal, W. Pieper, H.-J.Ehrke, D. Franke, W. Furst,C. M. Weinert:Electron.Lett. 32
(1996)782

[13] E. Jahn,N. Agrawal, M. Arbert,H.-J.Ehrke,D. Franke: Electron.Lett. 31 (1995)1857

[14] D. Wolfson, A. Kloch, T. Fjelde,C. Janz,B. Dagens,M. Renaud:IEEE Photon.Technol.Lett. 12
(2000)332

[15] R. Hess,M. Caraccia-Gross,W. Vogt, E. Gamper, P. A. Besse,M. Duelk, E. Gini, H. Melchior,
B. Mikkelsen,M. Vaa,K. S. Jepsen,K. E. Stubkjaer, S. Bouchoule:IEEE Photon.Technol.Lett. 10
(1998)165

[16] K. Tajima, S. Nakamura,Y. Ueno, J. Sasaki,T. Sugimoto,T. Kato, T. Shimoda,H. Hatakeyama,
T. Tamanuki,T. Sasaki:IEICE Trans.onElectron.E 83C (2000)959

[17] B. Mikkelsen,M. Vaa,N. Storkfelt, T. Durhuus,C. Joergensen,R. J. S. Pedersen,S. L. Danielsen,
K. E. Stubjaer, M. Gustavsson,W. van Berlo:Monolithic integratedMichelsoninterferometerwith
SOAs for high-speedall-optical signalprocessing,Proc.OFC’95 SanDiego, CA 1995,pp. 13-14,
paperTuD4

[18] K.-L. Deng,R. J.Runser, P. Toliver, C. Coldwell,D. Zhou,I. Glesk,P. R. Prucnal:Electron.Lett. 34
(1998)2418

[19] Neogi,O. Wada,Y. Takahashi,H. Kawaguchi:Opt.Lett. 23 (1998)1212

[20] K. Otsuka:Opt.Lett. 8 (1983)471

[21] N. J.Doran,D. Wood:Opt.Lett. 13 (1988)56

[22] N. J.Doran,D. S.Forrester, B. K. Nayar:Electron.Lett. 25 (1989)267

[23] M. Jinno,T. Matsumoto:Opt.Lett. 16 (1991)220

[24] E. Yamada,K. Suzuki,M. Nakazawa: Electron.Lett. 30 (1994)1966

[25] M. Asobe,T. Ohara,I. Yokohama,T. Kaino:Electron.Lett. 32 (1996)1396

[26] A. W. O’Neill, R. P. Webb:Electron.Lett. 26 (1990)2008

[27] J.Mark, J.Mork: Appl. Phys.Lett. 61 (1992)2281

[28] M. Eiselt:Electron.Lett. 28 (1992)1505

[29] I. Glesk,J.P. Sokoloff, P. R. Prucnal:Electron.Lett. 30 (1994)339

[30] K. L. Hall, G. Lenz,A. M. Darwish,E. P. Ippen:Opt.Comm.111(1994)589

[31] J.M. Tang,K. A. Shore:IEEE J.QuantumElectron.34 (1998)1263

[32] M. Y. Hong, Y. H. Chang,A. Dienes,J. P. Heritage,P. J. Delfyett: IEEE J. QuantumElectron.30
(1994)1122

[33] K. Suzuki,K. Iwatsuki,S.Nishi, M. Saruwatari:Electron.Lett. 30 (1994)1501

[34] R. J.Manning,D. A. O. Davies:Opt.Lett. 19 (1994)889

354

I. Glesk et al.

[35] R. J.Manning,D. A. O. Davies,D. Cotter, J.K. Lucek:Electron.Lett. 30 (1994)787

[36] B. K. Mathason,H. Shi, I. Nitta, J.Abeles,J.C. Connolly, P. J.Delfyett: IEEEPhoton.Technol.Lett.
11 (1999)331

[37] S.Diez,R. Ludwig, H. G. Weber:IEEE Photon.Technol.Lett. 11 (1999)60

[38] S.Diez,R. Ludwig, H. G. Weber:Electron.Lett. 34 (1998)803

[39] K. L. Hall, K. A. Rauschenbach:Opt.Lett. 23 (1998)1271

[40] K. Tajima,S.Nakamura,Y. Ueno:Mat. Sci.Eng.B - SolidB 48 (1997)88

355

������� �	��

�������������	
 ������� �������� ���	
�

��	�
���� ���� ���	
�� �� ���	
�	���

� � � � � � � � ! " � � � #$ % & � ' ! () � ! * % +) � � � � � " � + � , & - � , , . %

� � " / + - � " / # % 0 � ! , � � , � 1 � � * % 2 ! " / � , � & � " / 3 % � 1 � " / , � � 2 #

� " & 0 � ! , � 0 � ! + " � , #

#���	
����� � �����
��	� �������
���� �
������ �����
����� �
������� �� ������ ���
*���	
����� � �����
��	� �������
���� �
������ �����
����� �
������� �� ������ ���

 �
����� 	��
���! "���
��	 "��#������� $�� %	�&� �� �''�(� ���)
.���	
����� � �����
��	� �������
���� �
������ �����
����� �
������� �� ������ ���

 �
����� 	��
���! *���	 *
�
	���� +���#��,�� -� .(�/�� ���)
3���	
����� � �����
��	� �������
���� �
������ �����
����� �
������� �� ������ ���

 �
����� 	��
���! ���	� %
	�0	�� ���1
&�� �	���1�� ��� ���)

 2	,�#
 �
 �

���������! �3�	��!

,���
4��5�
������5��,)

��
�	��� #4 ��5��� *6667

����� # "������� *666

��������� �������	
� ��	�
��� �� ��������� ��	��	�5 ���
8� ��� ������% �	5������� ���	
� ������8� ���

��	�	9� ���	
� �	�� �	�	�	�� ����	���:	�5 ;��&<= ��
��	>��� ��
�	��� �	�5��
����� �� ���� �:
���	�5

#66 /�?� �������������	
 ���	
� ��	�
��� ��	�5 ���	
����
��� ���	
� ���	@�� ;���= ����	���	�	��

������� �A
	��� ���	
� ��	�
�	�5 �	�� BC66 �� ��
������ ����5D �� �� ����
�	�5 ���	
� ����	�5

����	���� �� ����D # �)9 �� ��	� ����% �� ���	�� ���8 ������D � 0�	�
���� !�	����	�D ��
��
�

���	9� �� ���������� ����� ���	
� ��	�
��� � ���
���	�5 �������� 	� ��
�	
� ������8� �� �D�����

����� 	������������	
 ���	
� ��	�
� 5������	�� �� ��������� ��
��
���	9�� -� �	�
��� �	�	��	��� ��

��� �	�	��� ������� �	��� �� ��� ��	�
�	�5 �	���� �� ������
�� ��� 	���5��	�5 ��� ���	
�� !�	�5 �����

���	
� ��	�
��� � ������	���:���% �� ���������� ��� #66�/�?� �������� ��� ������	
 �
8�� ��	�
�	�5 ��

��	�	�� �� ��� ���	
� ������8	�5 ���	
�	���% �� ��� �:������ �	��������� ������5��
������	�� ��

����� �	��� ��5����� -� ��� ��� ���	5��� �	5� ����	��� ����	�5 �D����� ��	�5 ��������

���	
� ��	�
��� � ���5 ���	
� ����	�5 5���
���� �� ��D9	�5 ���	
� �������� �	�� ����	����

�:
���	�5 #66 /)9 -� ���	��� ����� ���	
�� ��������� �����	�� ����
� �� ������	
� ���
���	�5 �

��	��D �� ���	
�	���
� �� ��������� �	����� �	5�	@
���D
��5	�5 ��� ���	
� �
�	��
����

	
� ����� ���	
� ����	�5% ���	
� ��	�
�	�5% ���	
� �	�� �	�	�	�� ����	���:	�5 ;��&<=% ������	

������8�% ���	
����
��� ���	
� ���	@�� ;���=% �������9 ���	
� �D�����	
 ������	���:�� ;���&=

�� ����������

�	��� ���	

�����	
�	�� ������8� ���
���	���� �� 	�
���� 	�
�
	�D
��5��D ��� �� ���
�� 	� ��� �����
� �� ����������� �� ��� ���	
�
���
������� �� ����D����� ���
����	���� ��� ��D�	
� �D�� ��� ���� ��

������
��
�����5	�� ���
���	��� �� 	������ ��� ��������
� �� ����� ������8� ���
�8�� ����5� ��
�������� �	�	���	9�	�� �� 	���5��	�� ��	��

6����	� 	�� 7,	��,� �����
���� ��� E3#FEG3% *66#

� *66# 8�,1�
 ��	����� �,0���#�
�5 �
����� �� �#� ���#�
�	���5

356

���	�	�5
���
�����	�	�� �� ��� ��
�����5	�� ��
��� �	����% ��� �	5���
�D��� �� ��� ������8 ��� ��

�������D ����� ��

������� ��� �������
��
� �����5��� �� ��� �D����� ��� ������ 5�����	��� �� ���	
� ������8� ��
��	�	9� ��� ���� ����	��� �� ���	
� @���% �� �:��
� �� ���� �� �
� 	��	�
�	���
����� 	� ����� ������5�� �	�	�	�� ����	���:�� ;&-&<= ������8�
�� �:
��� ��� ��
�	
� �	����� �� ��� ��	�	�5 ���
����	
� ��

�������
��
� �	5� �� ����% 	��	�	��� ������5��
������ �D ��
������� ��
��������% �	
���
��� �������
8�� ���� ������ ���� �
� �� ����
�
����� ��� �D����� �	�� ���	
��D 55��5�� ��A
 ���� ��D ����� 	���
��	>��%
�����D ��
�� �	�� ����� ��
�	��� �:������D �	5� �� ���� �� �
�
������5�� �D ��	�	9	�5 ���	
� �	�� �	�	�	�� ����	���:	�5 ;��&<= ��
��
����5	��% ���
���	���� 5����� 	�
�
	�D �� �����	��	�� �	�8� �� �
��
�	�	�D �� ��	�
�	�5 ���	
� 	� @��� ���	
 ������8�
� �� ������

�������	
� ��	�
��� �� ������	���:��� �� ��������� ��	��	�5 ���
8� ���
����	�5 ������ ���	
� �&< �D����� ;-� *666= ���	
����
��� ���	
�
����	���	�	�� �	�� ���5 ��
����D �	��� ;H#66 ��= ��� ���� ���� �� ������
����� �A
	��� 	������������	
 ������	
� ��	�
��� ��� ����	�� �� ���	���
��	�
�	�5 �� ������	���:	�5 �� ����	�?� �� ������ ����� ����	���	�	��
�� �D�	
��D ���� ���� ������� �:
	��	�� 	�
�	���D �	��� ���	
� ��
��	@��� �� ���	�� ���	
����
��� ����	��� ���5�	��� �:����	�� �:���	�
����� ;�	���� �� 	�5#II.7 ��8���J �� 	�5 #II.7 ���	� �� 	�5#IIC7 0��� �� 	�5#II47
"8��� �� 	�5 #IIE7 ���	��� �� 	�5 *666= �� �������	
� ��D��� ;2�5
�� 	�5 #II47 "8��� �� �K	� #II47 <��	�5 �� 	�5 #IIG7 0��� �� 	�5
#IIE7 ���	��� �� 	�5 *666= ��� ���� ��������� �� ��	��� 	������������	

��@5���	��� �� ����� ���	
�� &�� �� ���	�
���
� ���	5�% ��D �� �����
��	�
� �
�	��
����� ��� ���� 	���5����% 	��	
�	�5 ���	� ���	�	�	�D ��� ������

�����	
�	�� �D����� ;��� �� 	�5 #IIC7 <	88����� �� 	�5 #IIC7 ��� �� 	�5
#II47)��� �� 	�5 #IIE7 �K	� �� 	�5 *6667 -������ �� 	�5 *666=

���	
� ����	���	�	�� 	� ���	
����
���� �� ����	�	�5 �� ��� ������
��	�5 ������� �� �A
	��� ���	
� ��	�
��� ;-� *666= ���	
� ��	�
���
��	�5
�	���D �	��� ���	
����
��� ���	
� ���	@��� ;����= � ��� ����
�	��� ��	�
�	�5 �������% ��� ����������� ��	�
�	�5 	� �D����� ��	�5 ���

������ ����� ����5D ;*C6 ��= ;&��5 �� 	� #IIE= ������5� ���	�� ���	
��
��� ����������� ��� �������� ��	�
�	�5 �	����� �� ��� ;�*66 ��=
;"8��� �� 	�5 #IIE=% ��� ���	�� ���@��	�5 �J�
� ;���= �D�	
��D ��>�	���
���� ���	
�
������ ����5D ���
�	���D �	��� ���� /	� �����	�� 	��
��
�� ���@��	�5 	�
�	�� ���� 	� ����
�� �D ��	������ ��	��	�� ��
��������� ��>�	��� �����
������ ����� ����5D �� 5������ ��A
	��� ����	��
��	�D ��� ��	�
�	�5 ;�K	� �� 	� *666= ������5� ����� �����	
���
���
����	���	�	�� 	� ���	
����
����
� �� �:���	��� ��
�	��� �������
��	�
�	�5 ;-� *666= �� ������	
� ������	�� ;"��5	 �� 	�5 #IIE=% ��
��
�� ��� �����	�� 	� ��	� ���� �� ��� ���	
�� ��	�5 5	� �����	�� 	���
��
����	���	�D 	� ���� ��� ��
�	
� ����5D ��>�	������� ��
�	���D �	���

� � �!"��� �" �+5

357

�������� ���	
� ��	�
��� 	��	
�� ��� ����� ���	
�� �D �� 	����������
	� ������
�����
	� �D����� ����� ������	
� ���
���	�5 	� ��>�	���

� ��	>�� ����5� �� ����� ���	
� ��	�
�	�5 ����
����� 	� ���	� ���	
�
�	�	�D �� ��	��D �� �	J����� ���	
�	��� �� ��	�	�� �� �J��	�5 	�
�����

�
	�D 	� �	5����� ������8�% ����� ���	
�� ��� ��� ���� ��

�������D ����
� ������	
� ����	�5 5��� ��� ���	
� ���� �� ���������� ���	
�	���
"�� �D����� ��� ��>�	�� ������	
� ���
���	�5
� �� ���� ��	�D ���	9�� �
��D ���	
�	���
� ��

����	���� �D �	���D
��5	�5 ���
��@5���	��
�� ��� ���	
�

�� ��	� ����% �� ���	�� ��D �� ��� ���� ����	�	�5 ���	
�	��� �� ���
�����% �������� ���	
� ��	�
��� ����� 	�����	5�	�� � 0�	�
���� !�	�
����	�D -� 	������
� ��� �
�	��
����� ��� ��� ������	
� ��	�
��� ��

��
���	9� ���	� ��������
� 	� ��
�	�� * ��
�	�� . ����	��� ���	�� �� ���
������� #66�/�?� ���	
� �&< ������8 �������� ��� ��� ���� ������
������ ��	�5 ������	
� ��	�
�	�5 ��
�����5D �� ��	�	�� �� �	5�������
���	
� ����� ��
�5�	�	�� �� ������	���:	�5% ��� ���	
� ���
���	�5
���	
�	��� �� ����	��� �D ��D	�5 ��� ������� �	��� �� ��� ���	
�
��	�
�	�5 �	���� ��
�	�� 3 	������
�� ����� # � * ������	
� ����	�5
��	�
� ��� �	5������� ���	
� �
8��� ��	�5 �	�� ��	�
�	�5 �	�����
1�	�	�� �� ��� ��	�
�	�5 �	���� �	���
����� ���% L�:	��� ��
��	>�� ���
�	��������� ������	
� ����� �� ������5��
������	��% ��	
� 	�
���
�	��� 	� ��
�	�� C ��	� ��
��	>�� 	� 8�D ����	�5 ��
�����5D �� ���
���	5� �� ��������� ���	
� 	�����
� ������� -&< �� ���	
� �&<
������8� ��
�	�� 4 �������� ��� ���5 ���	
� ����	�5 �D����� �����D	�5
������	
� ����	�5 5��� ���
� �� ���� ��� ���	
� �	5����	
� ��

�����	
�	�� ���������� ���	
�	��� �	���D% ��	�� �	�
���	�� �� ���
���	�	�5 ��
��	
�
�����5�� �� ������ ������
�� �� 	������������	
 ����
���� ���	
� ��	�
��� 	� ��������� 	� ���
��
���	�5 ��
�	��

�� �
�
���
�� � ��������� �������
� ������ �����
�

��� ��������� ��	�
	���� �� �
�	��
����� ��� 	������������	
 ��������
���	
� ��	�
��� �� ���
�	��� 	� ��	� ��
�	�� -� ��5	� �	�� ��	�� �	����	
�
	������
�	�� �������� �D �:���	������D �������
��
���	��	
� �� �����
���	
�� �	���D% �� ���	�� ��
��� �J���� ������D �� 	���5��� ���	
�
��	�
��� ��	�5 ����

* #)������+�, &�1�,�0<�"�

�������������	
 ���	
�� ��� ���	
� ���
���	�5 �� ��5	
 ��� ���� �� 5���
	������� �� ��� �����
�
�����	�D ��� ���� �	�� ;����8 #IE.= ���	
�

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

358

��	�
�	�5 �� ������	���:	�5 5	��� �������� 	� ��� �����
�
�����	�D
�	�� ��� ����������� �� ����	��� ���	
� ���� �	����� ;"�,<�= ;&���
�� -��� #IEE7 &��� �� 	�5 #IEI7 �	��� �� <������� #II#= �����
���	
��% ��	
� �	���D
���	�� �� * � *
������ �� ���5 ���� �� @���
������ �D K�	�	�5 ��� ��� @���� �� ��� �� ���
������M� ���� ��5�����% ���D
���� ��8 ����	��� 	����
�	��� �������
������ �� �	5�� ����� �
���D ����
������5�� ����� ��� ���� �� ��� ����	��� 	����
�	�� 	� ����
@
	����D ��5�% ���� ��	�� 	� ��� �	5�� ����� ����5�	�5 �	�� ���
������
�����
� �� 	���
�� �	�� �����
� �� ���
�����������5�	�5 �	5�� �����
��� ���� ��� ����� �	�� ���
������ ����� ���
��5� 	� ���� ����� ���
	���������
�
���	�	�� � ��� ��� �� ��� ���� ���� ��� �	5��� ��
���	�� �
���
������ �� ��	�
��� ��� �	5�� �� ��� ������ ���� �	5��� �����	�5 ���
���� 	� ��� ����
� �� ���
������ �����% �� ��� �:���	��
� � ����
	���
����
��5� �� �� ��L�
��� �
8 ����� ��� ����
�

��� ��	�
�	�5 �	����� ��� "�,<�
� �� ��� ���D ����� � ���D �D�	�

��D ���D ������ ���� ���
��
���	��	
� �� ���
������ ����� �� ���
�������� �� ��� ����	���	�D ������% ��	�
�	�5 �:���	����� �	�� �������
�	���� �� 4*6 �� ��� ����
�	���� ;'�� �� 	�5 #II3=)������% "�,<�
������ ���� ��8 ����	��� 	����
�	�� 	� ��� @��� ��	
� �����D ��>�	���
�	5�
������ ����� ����5	�� ;H# ��= �� ���5 @��� ���� ���5��� ;H#66 �= ��
5������ �	5�	@
�� ���� ��	�� ������5� ����� �� ��D ��
��	>��� ��
����
� ���� ���
������ ����� ����5D ��>�	������� �� ���� ���5��� ;'��
�� 	�5 #II37 ����� �� 	�5 #II4=% ��
�	
�% "�,<� ���
�����
	� ���	
�

�����	
�	�� �D����� ��� D�� �� �� ���	9��

�	��	�5 ��
��	>�� �� ����
� ���
������ ����� ����5D �� @��� ���5���
��>�	��� 	� "�,<� ���	�� ���� ��	�5 ����	��� ����	� ����� ��� @���
<�D 5��������8	�5 �:���	����� �	�� ���� 	������� 	��� ��� ����
����������� ��� ��� ����5D ���	
� ������
����
��5� ��� 5	� �� ���
���	@��� ��A
	����D �� �����
� �	5�	@
�� ���� ��	��� 	� �����>����
������ ���	�5 �����5� ��� ���	@�� ;�M"�	�� �� -��� #II6= �� �����
	���5���� ���	
����
��� ���	@��� ���� ���D ����� ;B# ��= ���D ��
��
 ��
�	
� ������	�� �� 5�����	�5 � ���	
��D 	���
�� ����	���	�D
���	�	����D% ��� ������� ����� �� ��� ���� ��	�� �� ����D � ��� � ���
�	�	�5 ��5� �� ���
������ ����� ;<�8 �� <��8 #II*= !��	8� ���������
��� @��� ����	���	�D% �������% ��	� �������% 	������� ����	���	�D 	�
��� ���	
����
��� ����	� �� ���5 ���:�	�� �	�� ;#66FC66 ��= �J����
���� ���� ������D �� ���� ���
��� �� ��	�
�	�5 ���	
�� ��	�5 ���
�A
	��� ����	���	�D 	� ���� �� 	���
� �	J�����	� ����
��5� �������
��� ��� �	5�� ������
�����������5�	�5 	� ��� @��� ���� ��� @��� ���	
�
��������� �� 8���� � ���	
����
��� ���� ���	@�� 	� ���� �	����
;�,�,�<= �� �� ���� �� 	�����	5�� NN
������ ����
����� �� ���	
�

������	��MM ;�	���� #II*= ������5� ��� �	�	�5 ��5� �� ��� �������
��	�
�	�5 �	���� �� ��� �	
���
����% ��� �	����M� ���	�5 ��5�

� � �!"��� �" �+5

359

�������� ���� ��� 5	� ��
����D �	�� �� ��� ��� ��	
� �� ����:	�
����D 366 �� ;�	���� #II*=

��� ��� 	�����	�� �� �����
� �	
���
��� ��	�
�	�5 �	����� �	�� ����
�� � �
�	��
���� ���	9�	�� �� �� �	�
������ ��� ��� ������� �	��� ��
��� ��	�
�	�5 �	����
���� �� �	����D
��������� �D �K���	�5 ��� �	��
��
����� �� ��� ��� ���� ��� �	���	�� �� ��� ���� &�� �� ��� �D��	
� ��
��	�
��@5���	��% ��� ��	�
�	�5 �	����
����D
����� �	
���
 ��� ��� ���

����D �	�� �� ��� ��� � ��� ��� 	� �����
����� �� ��� �	���	�� �	5 #
����� �
����	
 �	5�� �� ��	� ���	
� 8���� � �������9 ���	
�
�D�����	
 ������	���:�� ;���&= ;��8���J �� 	�5 #II.= �� ��� ����
� ��

������ �����% �� ������ ����� ��� @��� ����% ��� �����5� ��� ��� �
�	J����� �	��� � ���D
�����������5�� ����� ��� ����% �� ��
���	��
	������������	
��D � ���
������ �	�
� ���� ������ �:���	��
� ��� ���
�J�
�	�� ���	�� � ���D ����5�� ����� ��� ����% ��� �� 	� ��L�
���
�
8 ����� ��� ����
� �� ��� ������
� �� ���
������ �����% ��	�
�	�5
�
�

�� -���
������ ����� 	� 	�K�
��� 	��� ��� ����% 	� ������� ��� ���
��
��5�� 	�� 	���: �� ����
�	�� �� ������% �	J�����	� ���� ��	��
�
��
�	���� ������� ��� ���
�����������5�	�5 �� ������ �� ��	�
� ���
�� ������ �� ��� ������ ���� ���D ��� ������ ���
������5�� �	�� ��
������ K��� ���	�� ���
������ ����� �D �� �� ��	
� ��� ���	
� ��� ���5�� ��
��� ��� �J��� �� ��	�
��� �� ��� ������ ���� ��� �����>���� �� ������
�	�� �	���� ��� � ��������� ���	@�� �� �����D ��
����	�5 ���	@�� ��
�	�� �� ��L�
��� �
8 ����� ��� ����
� � ����	9�	�� �� ������5�� @���� 	�
���� � ��� ������ �� �	�
�	�	��� ��� ��	�
��� �� �	5�� ���� ���
������
����� ��� ������� ����	�� �� ��� ��	�
�	�5 �	���� 	� ������	��� �D ���
�J��� �� ��� ���% �����% ���� ���
����� ���	�	�� �� ��� ���� �� ��	� �J���
	� ����
��% ��� ��	�
�	�5 �	���� �	9� ��
����� ��� �	9� �� ��� ���	��
��	�
�	�5 �	���� ����	��% ��	�% 	� ������ �� ��� �J��� ���	�	�� �D
��	� � *��������	��� ;����� ��	��� 	� ��� ����� �� �	5�� 	� @���=

�	5 # �
����	
 �� ���& ��� �	���
����� �� ��� ��� ���� ���
����� �� ��� ���� ������	��� ���

�	9� �� ��� ��	�
�	�5 �	���� � @���� � ��� ������ ��K�
�� ���
������ ����� ���� ��� ��	�
��� �� �	5��

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

360

�D ���
	���D
�������	�5 ��� �J��� ���	�	�� �� ��� ���% ���D �����
��	�
�	�5 �	�����
� ��
�	���� &�����	���:	�5 �� �	�5��
����� ����
 *C6�/�?� �� ����� �� ���� ����������� ;/���8 �� 	�5 #II3= �� ���
�	9� �� ��� ���	
� ���D ������� ���� ��� ��� ���5�� �� �J��� ���� ���

����� ���	�	�� 	� ��� ����%
���
� ���&� ���� ���� �	�
����
�����
����� ��� ����
������
��� �	�� ���� ���5��� �� ���� ��� # �

��� ���& 	� � 	���
��	��� ��� ��
�	
� ������	���:	�5 	� ���	
�

�����	
�	�� ������8� ��� �� 	�� ���
������ ����5D ��
�	��� ����
��	�
�	�5% ��� �	J�����	� ���� ��	�� ������� ���
�����������5�	�5 ��
������ ������ ����
� � ��� C66 �� ���5 ��/��0 ��� ;���� � .�.= �
# CC ��% ��� 	���:
��5� 	� �� ��� ����� �� #6�. �� �� ���� ���	���� ���
���
��	�� ����	�D
��5� ���
	��� �	�� ��	� ���� ��	�� 	� �� ��� ����� ��
#6#G
��. ;+����� �� 	�5 #III= ��	
� 	� ����:	����D #6O
��5� 	� ���

��	�� ����	�D �� � ������	���D �	��� ��� 	� ������	�� 	�����	�� ����
�������	
�
�
���	��� ;2�5 �� 	�5 #II4�7 <��	�5 �� 	�5 #IIG= �� �:���	�
����� ����������� ;2�5 �� 	�5 #II4
= ��� ���	@�� ���
������ �����
�	�� #6O �� ��� ��� �����	�� ����5D 	� ��A
	��� �� 	���
� � ���� ��	��
&�����	�5 ���� ��� ��� ��������%
������ �	�% �� ������5��%
������
����� ����5	�� �� BC66 ��
� �D�	
��D �� ���� ���
������ ����� ����5D
�
L�
���� �D ����D *6O �	����� �	5�	@
���D ��5��	�5 ��� �	5��������	��
��	� ;�"�= � ��� ��	�
��� ������ ;(��� �� 	�5 #III=

����	@�� ���������� ��	��	�� ;���= ��	��% �� ����� �����	��% ��

�������� ������
��
� ��� 	��
� ��� ���& ������ �"� ;(��� �� 	�5
#III= ��
������ �� ����� ����� �� ���	
� ���	@
�	��% ���� ���
����	���D �	5� ��	�� @5���� ����
�	�5 4FE �� �D
����	�5 ��� ������
�� ����� ����5D �� �����D	�5 � ���	
� ������ @����% ����� ����
�����	�� �� ��� ������	���:�� �� ����
�	���� 	� ��� ������
� �� ��	�
��	�� ;&��5 �� 	�5 #IIE= ����� ��
��	>��� ��
� � ��� ������5�� ���
���	�� �� ��� ���	
� ��	�
�
� ����D ��	�	��� ��� 	�L���
� �� ��� ��
��� ��	�
��� ������ �	5�� ;&	�9 �� 	�5 #III= ������5� ��A
	��� ��
����� ����5D 	� ������ ��� ����
�	�� ���� ��� �
85����� ��	��% ���
�:	��� ������� �� ����5D 	�
�����	��� �D ��� �����	��
��
�
���	��	
� �� ��� ��� �������	
� �� �:���	����� ����	�� �� ��� �� �	5��
�����	�� �J�
�
�����	� ��� �� ����5D �� ����:	����D �� ���� ���
CF#6O �� ���
������ �	5�� ;2�5 �� 	�5 #II4�= ��	� ����% �������% ���
����� ���	�D ���� ��� ���	
� �&< �� �	� ��� � ���� � ��� ���&
�����	�5
��
���	��	
�

��� ���& 	� ������ �� ���������� ��	�	��� ��
� �� ���	��D �������
�	����� ���	�	9�	�� � �� �	5��� ����5�	�5 	� ���� �	��
�	��� �����
��� ���� �:���	��
� ��� ��� �J�
�	�� ���	�� ��� �
�	��
����
� ��� ��
����� ��

������� ����� �����% �	5��D ����	��� ����	�� 	� ��
� ��
��� ��� �� ������ ��� ���	
� �	�� �	J����� ������5��� �� ��
�	��� ����
�����
� ����
������ ��	� ���	
� �� 	�� ����� ��	�	��� �D ����� �� ��

� � �!"��� �" �+5

361

 ��
�	
� ����
� �� ������	
� ��	�
�	�5 � ���D
� �� 	���5���� ��	�5
��	��D �� ��
��	>��� ��� �� �	�
����� ���� 	� ��	� ��
�	��

* * ��)�� �0��+�, �-��+) /��<������

������5� ��� ���& 	� ���� ���� �5�
 	�������������% ����� 	�����
��������	

��@5���	��� �� ����	��� ��	�5 �	�	�� �����	�5 ��	�
	���
����� �
�	��
����� 	������ ��� 	���5���	�	�D �� ��������
� �� ��� ���
�	
�% �����5� ���D �D ��>�	��
�	�� ���	�	9�	�� 	�
������
��� ���� �	��

����
��������� ��� ��	�	��� �� ��� ��	�
� 	� <
��(������
	�������������
��@5���	�� �� ����� 	� �	5 * �� ��� ����
� �� ���

������ �	5���% ��� <
��(������ 	� ���
�� �� ��� �� �	5��� ��
��K�
��� ���� ��� ������ ���� -���
������ ������ �� 	�K�
��� 	��� ���
	�������������% �	J�����	� ���� ��	�� 	� ��	�LD 	������
�� ������� ��� ���
��� �� ��� 	�������������
��	�5 �� ����� �� �� ��	�
��� �� ��� ������
���� �	�	�� �� ��� ���&% �����>���� �� ������ ��� ��� �����5� ���
��	�
� ��� ��� ���� ��
����D �� ���� ���� �� �� ��K�
��� ��� �	J����
�
������� ��� ��� <
��(������ 5������	�� ����� 	� �	�� �����
� �� ���
����5�	�� �	��
�	�� ��
������ �� �� �	5��� �� ���
���	�	�5 �����
<
��(������ ;+0<(= ����� 	� �	5 *;=% ��� �� ��
������ �	5���

�����������5�� �����5� ��� 	������������� �� ������% @���� 	� ���
������ � ��� ������ �� ��K�
� ���
������% �� ���
������
� ��
������ 	���
��� 	������������� �	����� 	������
	�5 ��	�	���
����	�5 ������ ���
���	�� ��	�
�	�5 �	���� ��� ��� +0<(� ������	��� �D ��� �	���
� ���
����� ��� �	���	��� �� ��� ���� ��
� ��� ��	� � *��������	��� ��� �����
�
�	��
���� 8���� � ��� �D�����	
 <
��(������ ;�<(=% ����� 	�
�	5 *;�=% ��>�	��� @���� � ��� ������ ���� �� ��K�
� ���
������ ���� ���

�	5 * ��� <
�F(������ ���	
� ��	�
� 5������	��� ;= ���
���	�	�5 ����� <
�F(������ ;+0<(= ��

;�= ��� �D�����	
 <
�F(������ ;�<(=

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

362

��	�
��� �� �	5�� �	�
� �� ��
������ �	5���
������5�� �����	�5
��� ���� �� ���	�	���� 	� ��� ��� ����	�� ��
�	�� �	��	� ��� 	���������
�����% ��� ���	�� ��	�
�	�5 �	���� ��� ��� �<(� ������	��� �D ���
�������
������ ����� �����	��% ��
�% �� +������ # �� +������ * ��	�� ��
�����	�5 ��� 	������������� ��
� ��� ��	� � ��
�

������5� ��� ���	�� ��	�
�	�5 �	���� �	9� ����	��� � ���	��� �� ���
��	�
�	�5 �	���� ������� ����	��% 	� ���� ���

���� ��� ��� @�	�� ���5��
�� ��� ���� -�	�� ��� ��� ���5�� �� �	���� �J�
� �� ��� �<(5������D% ���
�	�	���
�	����� ��	�
�	�5 �	����� ��� ���� ��� ���& �� +0<(��

�����	��� �D ��� ���5�� �� ��� ���� ;2�5 �� 	�5 #II47 ���	��� �� 	�5
*666=

* . �P0���<�"��, �1�,!����" �� �0��+�, �-��+) 0�����<�"+�

-�	�� ��D �������	
� ������ ��� ���� ��������� �� ��������� ��� ���
����� ������� �������� �� ���� ;<�8 �� <��8 #II*7)�� �� 	�5 #II37
)��5 �� 	�5 #II37 ��5 �� ����� #IIE= �� ���
��
���	��	
� �� �����
���	
� ��	�
��� ;2�5 �� 	�5 #II47 "8��� �� �K	� #II47 <��	�5
�� 	� #IIG7 0��� �� 	�5 #IIE7 ���	��� �� 	�5 *666=% �� ������� �����D ��
��� �:���	������D ������� ��	�
�	�5 ��������
� �� ��� ����� 5������	��
	������
�� 	� ��� ����	��� ��
�	�� ��� ����� ��	�
��� ����
������
��� ����
�	�	�� �	�
����
��������� ��� ��	�
�	�5 �	����� ����
�	���� �D ��	�5
 �
��	�5 ���������� ������ ��� 	� ���
�	��� 	� ���	��� �� 	�5 ;*666=
��� ������ 	� ���� �� ��D ��� ���D ��� �� ��� �� ������ 	� �	�� ����
36��� ��5� �	�� �����
� �� ���
������ ������ ��� ������ �� ��� �D���� 	�

�������	�� �� ��� �� ������ �	�� ��� ������� ���
�	�� �� ��� ��	�
�	�5
�	���� 	���
�� �D ���
������ ��	� ��
��	>�� ����	��� ���� �� ��	��D

��
���	9	�5 ��� ��	�
�	�5 �	���� -�	�� ��� ���& 	� ���� ���� ���
	��������D ����� �5�
 	�������������% ������ ��	�	��� 	� ��� ���	
�
@���
��� ��� ������ �� ��� <
��(������ ��	�
��� �� L�
���� �����D 	�
�	�� �D �������	�5 ��� �
� � ��� ����� ��� ��� ������ ��	�	���%
��	�
�	�5 �	����� �� ��� @�������� <
��(������ 5������	��
� �� ���
�	��� �	����� ������	�5 ��
�����: ���	�	9�	�� ��
��	>��� ;"��� ���
������ ��	�	��� �� ��� �	5�	@
���D J�
� ��� ���	�	�D �� �D �� �����
	�������������� 	� 	���5���� ���	
�� �	�� ����� ���	
� ��� ���5��� �� ���� =

��� ��	�
�	�5 �	���� ����	��� 	������	�� ��5��	�5 ��� ����% ���	�
����% �� ������� �	��� �� ��� ���	
� ������� ���
�	�� ��	�
��
���	9�
�	�� 	� 	���������� 	� ������	�	�5 ��� ���	
� ������	���:	�5 �� ����	�5
����	��� �� ��� ��	�
� ��� ��� ������� ���
�	��� ����% ��	��� ����� ����5	��%
�	����% �� �����	�	�� ���� ���� ���� �� ���������� ��� �J�
� �����
�������� ��� �� ��� ��	�
�	�5 ��������
� ��� ��� ���& �	�����
����� 	� �	5 .;=% ��� �� ��
������ ������ ���� ��� �� ����5	�� �� C ��

� � �!"��� �" �+5

363

*6 �� �����
�	���D �� ���	�������� @��� ������
8�� ���� �����
�� * .���
������ � #6�/)9 �����	�	�� ��� ��� ���5 �	�	�5 ��5� �� ��� ��	�
�	�5
�	���� 	� ��� �� ��� @�	�� ���5�� �� ��� ��� ������ ��� ���� ���	�5 ��5� 	�
���D �	�	��� �D ��� �� ��
������ ����� �	���� ��� ������� 	��	
�� ��� ���
��	�
�	�5 �	���� ��
����� ����D �	����D � ��� ��� �J��� ���	�	�� �	��	�
��� ���� 	� ��
����� �� ��� ��	�
�	�5 �	���� ��
���� �������% ��� ���	�
���� ��� 	� ����
�� ��
� ��� �J��� ��
���� ���� ��� ��� ���5�� �� ��� ���
�� ����	�� �� ��� ��� �������� ��� �	���	�� �� ��� ����% ��� �	����
����	���	�D 	� ����
�� �� ����
������ 	� �������� � ��� ������ ���	�
�	����D% � �:������D ���� �J����% ��� ��	�
�	�5 �	���� �	��� ���� ���
��
���� ������� �	�
� ��� @�	�� �� ��
������ ����� �	���� ��
��� ���
���	��� �	�	��	�� ��	� �����
���	���� ���	� ��� �J�
�	�� ��	�
�	�5 �J��� 	�
6 �� � ��	
� ��	�� ��� ��	�
�	�5 �	���� ����D ��	���� ��� ��������
��	�
�	�5 �	����
�	���� �	�� ��	� �:���	���� �� ���� . E �� � �-)<

��� +0<(��	�
� �� ��� 	�����	5��� ����� �	�	��
	�
�����
�� ��
��	�
�� ��� �� ��
������ ������ ���� ����:	����D # 4 �� 	� �	��� �	��
�	�	�� ����� ����5	�� � ������ ��� ������� �� ����� �
�� �� ����� 	�
�	5 .;�= ��
������ �� ��� ���&% ���
�����������5�	�5 5������D �	5�
�	@
���D 	�
����� ���� ��� �	�� �� ��� �	��� �� ��� �	���� ��5�� ��	� 	�
��	��	�D ���
�	�� �� ��� @�	�� ��� ���5���% ��	
� ���� �
� ����:	�
����D C66 �� ��� �
�	��
���� �� ��� +0<(�	�	�� 	�� ��������
� ��
�	�	��� ��	�
�	�5 �	���� �	���� �� ���� E �� ��� ��	� ��� ���5��
;���	��� �� 	�5 *666=

�	5 . �:���	����� ����������� �� ��� ������� ��	�
�	�5 �	���� ��� ��� ;= ���&% ;�= +0<(% ��

;
= �<(� ��� �	���� �	9� 	� ��

���	���D ����
�� ������ ��� �������� ��	�
�	�5 �	����
�	���� �	�� ���

�<(

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

364

��� �<(�
�	��
���� 	� ���� ��	��� ��� �	5� ����	��� ���	
�	��� &��
�� 	��
������5�	�5 �����% ��� ��	�
�	�5 �	���� �� ��� �<(�� ���
��	>��
��
���	��	
 �� ���� ���� �	�	�5 �� ���	�5 ��5�� �� ���������
�:�	�	�� �� ��������
� ���� ��� ���5�� �� ��� ���	
� ���	@��� !��������
����� �	���� �� ����:	����D C66 �� � * C�/)9 �����	�	�� ��� ���� ����
�� ������ ��� ���	
� ��� �� ��
������ ����� ����5	�� ���� ��� �� #4 ��
*66 �� �����
�	���D � ��� 	���� ����� �� ��� ��	�
� ��� ������� �� ���
�:���	���� �� ����� 	� �	5 .;
= ��� ��
�H4 ��% ��� ��8 �� ��� ��	�
�	�5
�	���� L����� ���% 	��	
�	�5 ��� ��� �� ����� 	�
��������D ��	�
��� ���
��� ����	�� �� ��� �	���� ��� ������
������ ����� �����	���% ��� ��
��	���� 5�����D ��
����� ��� �� ��� @�	�� ������� �	���� �� ���� ���

������ �� �� ������ ��� ������� ����
���� �	���� �� # C ��% �
����� 	� ��� 	���� �� �	5 .;
= ��	� ��������
� 	��	
��� ��� ��� �<(
�
�	��
���� �D �� ��	���� ��� ������	���:	�5 ���� 446�/�?� �� �����
����
	�5 ��� ���	
� ��	�
�	�5 �	���� ������� �� ����	
���
��� ��5	���
�D ��
�����5	�5 ��� �� ��� 5	�
�������	�� ;�K	� �� 	�5 *666=
������� 	�����	5�	�� �� ����������� �� ����� �D��	
� �� � 	�������
�� �� ������ �����
�

��� �A
	��
D �� �� �� ����� ���	
� ��	�
���
� ��D ������	�5 ���� ���
���	
� �����	�5
��
���	��	
� �� ��� 5������D ���� ��� ��� ��	�
�	�5
�	����� ���
�	��� 	� ��	� ��
�	��% ��� L� ����	�� �� ��� �	���� ���	����

�
��������� �� ��	�
�	�5 �A
	��
D �� 5����� ��� #66O ��� �� ��� 5	�
	������ �� ��� �� �	5�� �D ���
�	���D��	��� ���	
� ���	@�� ��� ���
���� �� �	��� ���� ��� ��������� ��	�� ��
�	��� 5	� 	� ��� ��	�
���
������ �:���	����� ���������	��� ��� �������� 4��� 5	� 	� ��� ��	��

��� ������ ��� ���& �	���� �	��� �� #6 �� ;&��5 �� 	�5 #IIE= �� ���
��	�
�	�5 �	���� 	� ����
��% ���
������ �� �A
	��
D ���� ��
���� ��� ��
��� @�	�� ����� �	���� �� ��� ���5��� ���� 	� ��� ���	
� ��� ��� ���&%
3 �� ��	�
�	�5 �	���� ���� �� ������	���: �	�5��
����� ���� *C6 /�?�
�� �����
�	���� #3O �A
	��
D � # . �� ;/���8 �� 	�5 #II3= �� ���
��� ���	
�	�� �� ���	5� ��
��	>��� 	������% 5����� ��	�
�	�5 �A
	��
	��
��� ������� ��	�
�	�5 �	����� �� �:��
���

* 3 �"��/����& �,,��0��+�, �-��+)��

-�	�� �� �� ��� 5������	�� ���������
� ��
������
��� ���� �	�
����

���������% ��
�	
�% �	5� ��������
� ������	
� ��	�
��� ���
�����
	�
�D����� �	�� ���� �	8��D �8� ����5� �� ������	
 	���5��	�� ��
�����5D
1�	��� 5����� ��� 	���5���� ��� �5�
% <
��(������% �� <	
������
	������������� ������	
� ��	�
� 5������	�� �� ����� �� ���	
�� �����
���	
��% ���� �����	��	
 �� �D��	� ��
�����5	�� ��� ���� ���� -� ��	�LD
���	�� ��� ���5���� ��� �� ���� ��� 	� ��	� ��

� � �!"��� �" �+5

365

��� @��� �����	��	
��D 	���5���� ����	��� �5�
 	�������������
��
��� �� ������	���:	�5 ���� *6 �� #6 /�?� �� C /�?� �� ����������� �D ���
)�	��	
�)���9 ����	���� ;))�= 	� #II4 ;��� �� 	�5 #II4= ���� ��� +0<(
�� �<(5������	�� ��� ���� 	���5���� �� �����>�����D ����������� �
�	5������� ������	���:��� �D ��D 5����� ;��� �� 	�5 #IIC7)��� �� 	�5 #IIE7
�K	� �� 	�5 *6667 -������ �� 	�5 *666= ��� <
��(������ ����
����� �D
�� ���� ��
�	
� �� 	���5��� ��� ��� �5�

��@5���	�� �	�
� ���D ��
��� ��>�	�� ��5� ���� ��	�� ������ �� ��	� ����	�5 ������ 	� ��� ����
5�	��� ��� �<(�� ��� 	������� ����5� ��� 	� �:�	�	�� ��� ��������
��	�
�	�5 �	���� 	� ���
������5�	�5
��@5���	�� �	���D% � ����
���� ���	
� ��	�
� ��	�5 � 	���5���� <	
������ 	������������� �� ����
�� ���������� ������	���:	�5 ���� *6 �� C /�?� ;<	88����� �� 	�5 #IIC=
��� <	
������
��@5���	�� �D �� ��
�	
� ����
� �� 	���5����
��	�
�	�5 � ��	���L�
�	��
��	�5 	� ���D ���	�� �� ��� �	�� �� ��� ���	
�
�� ���D ��� @�������
�	�
����	�5� �� ��
����D ��� 	�� �����	�� �
������	���:�� ;<	88����� �� 	�5 #IIC=

��� �	5���� ��������
� ��� 	���5���� ������	���:��� �� ���� ������
������ ��	�5 ��� <
��(������ ����
����� ���� ��� +0<(���	
��� �D
))� �� ��� �<(���	
��� �D ��
��� ��� ���� ���� �� ������	���:
���� 36 �� #6 /�?� ;��� �� 	�5 #IIC7 -������ �� 	�5 *666= ��� ��
���
�����	��	
 �<(� � ���
�	�� ���	
�% � �� ���5�	���
���	� �
�	��
��� ������� ���	
��� �� ��� ��� �������� ��	� ���	
� 	������� ���
���	
� ����� ��>�	������� �:����	�5 ��� 	���� �	5�� �D��	
 ��5� �D
��	�5
������ �����
8
������ �� ��� ��� �������	@��� ;-������ �� 	�5
*666= � �	5� ��������
� �����	��	
��D 	���5���� �<(�� ��� ����
�������� �D
�������	�� ���5 ��� ��	�� ������ ����	���� �� ��
��
����5D% !�	����	�D �� &����8% �� ���
� ����
�� ��	� 5����
�	����
���	��� ������	���:	�5 ���� E6 �� #6 /�?� ;)��� �� 	�5 #IIE= ��� �	5����
��������
� ��� � 	���5���� �<(�� ��� �� ����
�	���� ��	�5
�D��	� ��
��	>�� �����D�� �D "�+ ;�K	� �� 	�5 *666= �	��� 5�	��� ��
���	�� �	�	
 ���5�	��� �� @��� ���	
��� ���� �	�	
�� ���� �	5�����

	�
�	� ;0,+= ���
�	�� ��� ��D
�	� 	� ���� L	��
�	� ������� ���� ���
0,+ "�+ ���� ��	�
�	� �� ���������� ������	���:	�5 ���� #4E ��
#6 /�?� ;�K	� �� 	�5 *666= ������� ���5���� 	� ������	
 ���	
� 	���5��
�	�� �	�� ����� ��� �����D���� �� �	5� ��������
� ���	
� ��	�
��� 	�

�����
	� �D�����

�� !�������� ������ "�# �
���$�
����
� �� ���������� �
�������
%
��

��� @��� ���	
�	�� �� ������� ���	
� ��	�
��� ������� �	����	
��D ����
���	� ��� � ���	
� ������	���:��� ��� @��� ���������	��� �� #66�/�?�
�D����� ��	�5 ���&�
������
��� ���� �	�
����
��������� �� ���
�	��� 	�

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

366

��	� ��
�	�� �� ��	�	�� �� ����	�	�5 �	5� ����	���% ����� �D����� �J�� ���
����
D �� �	5� �
��	�	�D �
������ �� ���
����	
 �
8�� ��	�
�	�5
���	
�

. # 0��+��+�, �,,��0��+�, &�<!,��0,�P�"/ &�<�"�������"�

��� ���D ����� ������� ��	�
�	�5 �	����� ������ �D ���	
��D 	���
	�5
����	���	�D 	� ���� ����� ���	
� ������ �� �� 	��	�	����D ����
��� ���� �
55��5��� ���� �� �� ������ �
� ��	�
�	�5 ����� �������� ��� �:
	���

��	��� 	� ��� ��� ���� ���
����
�	�� ��� �� ����� ��� �����>����
��	�
�	�5 ����� �� �8� ��
�% ���
��	��� ���� �� ���
��	
��D ������ �
8
	��� ��� �:
	��� ���� ��	� ��
����D �	�� 	� ����:	����D #66FC66 �� �	�
�
��� ��
����D �	�� 5������D ������	��� ��� �����	�	�� ��� �� ��� ��	�
�% ���
���& 	� 	����D ���	�� �� ���	
� ������	���:	�5 ���	
�	��� �� ��	� ���
5	��% ��� ��	�
� 	�
�	���� � ��� ������ ��� �� ��� ��
�	�	�5 ���� ��	��
��� 55��5�� �� ��� 	� ��D �	��� ����� ��� ��� ���
���	�5 ���
����	
�

��� @��� �:���	����� �� ������ ��� ��������
� �� ��� ���&
���	����
�� 55��5�	�5 ������ ������ 	� �	�� �� ���� � ������� ���	
� �&< ����
�D�	
��D ��� ����� 	� ��� �	���� �� ��� ���� �� �������� �	��
����������� �� ������ ��	�� ��� ��	5����	�5 ������ ���� �� ��� �� ���
��� ������	���:�� �� ���� �� ����
� ��� �������� �� �	5�� ���� ���
������� �	�� ���� ��� @��� �:���	���� ����������� ��� ���&M� �	�	�D
�� ��	�
� ������ ���� C6 /�?� �	�� ���� �� ������ ��� �� # *C /�?�
;��8���J �� 	�5 #II.= ��	� �� �����>�����D �������� �D *C6 /�?�
������	���:	�5 �:���	���� ;/���8 �� 	�5 #II3= �� ���������� ������	���:	�5
����
���	����� #46�/�?� �� ����� ;��9�8	 �� 	�5 #II3= "����� 	� ��
�� ����� ���������	��� �� ��� ���
������ ����� ����5D ;B# ��= ������ ��
������� ��� ������	���:	�5 ���
�	��

-	�� ��� ��

������ ����������� �� ���	
� ������	���:	�5% ��D ���
��
��	>��� ��� ���� ���� �� ����
� ��� ��������
� �� ����� ���	
�� ��
��� ���	
� ��	�
�	�5 ���
�	�� 	� ���� ���� 5	� �����	�� 	� � ���% ���
�����	�	�� ��� �� ��� ������	���:	�5 �����	�� 	� ������� �	�	��� �D ���
��
����D �	�� �� ��� ���	@�� � ����� ���	
� �	�	�5 ��
��	>�� ��	�5 +-
�	5�� �� �	5�	@
���D ����
�� ��	� ��
����D �	�� ;<��	�5 �� &�	�� #II3=
�� �� ���� ���	���� ��� ��	� ������ �D ����� ��� ���	
� ��	�
� ��
���
�	�� � �����	�	�� ���� ����
�	�5 #66 /)9 ;<��	�5 �� 	�5 #II3=
����� ���������	��� ��� ����� ��� ��� ���&
� �� ��

�������D ���� ��
������	���: ��D ������5��� �	����������D ���� � 55��5��� ��&<?
-&< �� ����� ;<����� �� 	�5 #III= �� ��	�	�� �� ����� ���	
�	���%
��� �
�	��
����� �� ��� ����5	�5 ��� �D 	������ ��� ��������
� &��
������5�� �����	�� �� ���� ����������� ��	�5
��@5���	�� 8���� �
 5	� ��������� ;/�=���� ��	�
� ;&	�9 �� 	�5 #III= ��	� ���	
� ����

� � �!"��� �" �+5

367

�� �	5�� � ���5�� ������5�� ��� ���
������ �� ��� ��� �� 	� ��
���� ��� ��� ��5� �� ��� ���	
� ���	@�� ��� �	5��������	�� ��	� �� ���
���	
� 	� ����
�� �� ��� ��	�
�	�5
������ � ��� ������
� �� 	�������
��� /����� ��	�
� �� ���� ��

�������D ���	�� � � ��?���� ����	�
���:�� ;&	�9 �� 	�5 #III= ���
�

������� ������ ������5��
������
���� 	� � ��&<?-&< �� ����� ;&	�9 �� 	�5 #IIE=

. * � &������!��& 0)���"�+ 0�+2����-��+)�& "��-��2

������5� ���
����	
 �
8�� ��	�
�	�5 ��
��	>��� ��� ���� ��� �� ���� ���
����	��� ��>�	������� �� ������8 ��A
 �� ��% ���D �� ���	����D �	�	���
�D ��� ���
���	�5
��	�	�	�� �� ���
����	
 ���	
�� �� � ���
����	
 �
8���
��	�
��� ������8% ���	
� ��
�����5D 	� �D�	
��D ���� ���D ��� �������� ��
��������	�5 �� ���� ��� ���� �� ��� ��:�% �� ��� �� �����5��� ���	
��
������
����	
 �� ���
����	
�������	
�
������	��� � �
� ���� !��	����D%
��� ����� �	8� ��
��������D ��	� ��	�
������	�� ��������
8 �D 8���	�5 ���
�� 	� ��� ���	
� ���	� �����5���� ��� ���	�� ����	�5 ���
��� �� ����
�
��� �
8�� ����	�5 ����
D ;���	��� �� 	�5 #IIE= ��	� �D�� �� ��
�����
�	
�	��% ����� �
8��� �� ������ 	� � ���	
��D ��������� �����% 	�
�������� �� � �#���� �	�&�� �1���#���

�D �:���	�	�5 ���	
� �&< ���
���	�5 ��
��	>���% 	� 	� ����	��� ��
���
����
� � ������	5�
�
	�D �
8�� ��	�
� �	����� ������	�5 ��
����	
���
������5��
������	�� ��
�����5D ��� ����� �� ��>�	��� ��� ������	

�
8�� ��	�
� ���� �� -&< ��
�����5D �� �:���� �� ������8 ����
���� ���	
� �&< ��
��	>��� 	� ��� �
8�����	�
��� ���	
� ������8	�5
���������	��% �� 0�"& ������8 ;���	��� �� 	�5 #IIE=% ��	
� 	�
���� ��
���
���	�5 #66�/�?� �
8��� �� ����� �� �	�	�	9� ���
�����:	�D �� ���
����	�5 �����
��� �� �	���	�D ��� ����	�5 ������% ��� 0�"& ������� 	�
���� ���� ��5��� �	���	����� �
�	��
����% ��
� � ��� E����� ���Q�"��
;����� #IG#= ����� �� ��� ���� �	�� �� �	5 3

�� �:������ �	�� �� ��� ������8 ���� �
�	��
���� 	� ����� 	� �	5 3 ���
������8 ����
���	��� �� @�� ��	��D ����D������ ;#= � ���	
� �
8��
5�����	�� ��
�������	�� ����D���� �� 	�����
� ��� ���� �� ��� �� ���
��
� �	5��� ���	
� �&< ������8 �� ��� ;&��5 �� 	�5 #IIG=% ;*= � ���
���	
� ����� ���
����� �� �:��
� ����	�5 	������	�� ���� ��� 	�
��	�5
�
8���% ;.= � ���
����	
 ����	�5
��������� �� ��� ��� ���� �� ��� ����	�5
��	�
�% ;3= � ���	
� ��
� ��	�
� �� ����� ��� �
8��� �� ��� ������	��
������ ����% �� @���D ;C= �
8�� ����
�	�� ����D���� ��� ��
�������	�5
��
�	��� �
8��� ;���	��� �� 	�5 #III= � ����� @��� ���	
 ���
���	�5 ���D
��J�� ;B#6 �= 	� ��>�	��� �� ����� ��� ���	
� �
8�� ��	�� ��� ���
����	

����	�5
��������� ���� ��� ���� �� ��� ����	�5 ��	�
� ������5� ���
����	

	�
�	��D 	� ���� �� �8� ��� ����	�5 ��
	�	��% ��� �
8�� ���	�� 	� ���

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

368

���	
� ���	� �����5���� ��� ���	�� ����	�5 ���
��� 	� ��	� �D��	� ����
�
�� ������	
 �
8�� ��	�
�	�5

��� ������	
 �
8�� ����	�5 ����
D
� �� �	5�	@
���D ����
�� �D
8���	�5 ��� ������ �� ������ �	�� ���
����� � �
� ���� �� �	�	��� ��
��	�
��% ��� ����	�5 �����
�� ��������� ��� ��� 0�"& ������8 ���D
��>�	��� ��� �	��D
������ �	�� 	� ����� �� ������	�� ������� ��� �
8��
������ �� �	��
��� �� ���� ��� 6% ���� ��� #% �� ��
�	��� � ��� �: ���� ;���
�� 	�5 #IIG= ��� ����	�5 ����� ��� 	� ������� �� ��� ����� �� �
8��

���	��� �� ��>���
� �� ���� ��
� ����	�5 	�����
�	���% ��� ���� �� �	5��
����	�5 �	�� 	� ���
�� �� ��� E����� ���Q�"�� �	�
� ��	� ����� 	� ��
����
� ��� ��� #66�/�?� �� ��� � ��� �
8�� �D���% � ��D �� ���
���&� 	� ���� 	� ��� ������	
� ����� ���
����� �� �:��
� ��� ����	�5

������ �	�� � ��� �
8�� ������ ��� ���� ��� �:����% �� ����� �
8��
���� "��� 6 �� "��� G 	� ��� 0�"& ������8% ����	��� ��� 	� �����5�
	�������	�� "���� 3 �� # ��� �
8�� ������ ����	�5 ��>���
� ��� ��� ���
6% 3% #% G ������ �� ��� 6% ��� #% ��� #% �� �: �����
�	���D ��� �	5����	�
����� ������ ��>���
�
���������	�5 �� ��	� ��� 	� R66S% R#6S% R#6S% R##S
;���	��� �� 	�5 #IIE=

� �	�5�� ���� �� ��� 0�"& ������8 ��
������
��� �� ����� � �������
��� �����	�5 ��� 8�D ���	
� ��
�����5	�� ��>�	��� �� 	�������� � ���	��
������8 �� ���������� ��� ���
�	��� �����	�� �� ��� �������% ��>���
�
�� #66�/�?� �
8��� 	� 	�K�
��� 	��� ��� ����	�5 ���� �� �	����� ��� ���
�����5� "���� 6% 3% #% �� G �	�
� ���D ��� ���� ��
������
���% ���
��D�	
� ������8 ���� �� �D��	
 �	���� ������ ��� 	� ������ ��� �
�
�
8�� ����
��� �� ��L�
� ��� �	������ ��� �����5� ��� ������8 ���

�	5 3 �� ��&< �	���	����� ������	
 �
8�����	�
��� ������8 �� �	5������� ���Q�"�� �
�	��
����

	� ���	
��� �� ��� ���� ��� �:������ �	�� �� ���� �� ��� �	5�� ����� ��� 	��	�	��� ����D�����

������
��� ��� ��� ���������	��

� � �!"��� �" �+5

369

����	�5
������ �	5��� �� ��	�
� ������� �� ���	����� �	�� ���������
�
���� �� ���	�D ��� ��� ���	
� �
8��� �� ����
��� �� ������
����
��D

�� ���� ��� ���	�� ����	�5 ��� ���� "��� 6 �� "��� G% ��>���
� �� ����
#66�/�?� �
8���% ������� �D #46 ��% �� 	�K�
��� 	��� ��� ���� ���
������	���:�� ����� �	�� �� ����� 	� �	5 C;= ��� ��� ��� ��������%
���& 6 �� ���& #% �� ��� ���& ������ �	5��� � ������� ��
����	�����	�	��� ���������
��� ����� ������� ���� �	5	�� ���������	�5
�� �	���D�� 	� ��� ��� ����� ��
��% ��� 6 �� ��� # �� �
� �
8�� ������
��� ����% �	� �� ����� �	�� 	� ������	���:�� 	� ������ �D ���& 6 ��
���& # ���� ���
	@
 ����	�5 5���� �� �	5 C;=% ��� ������ ��>���
� 	�

����
��D ������	���:�� � R66S% R#6S% R#6S% �� R##S ��� �:����% ����
���& 6 �� ���& # ������	���: N#M ���� ��� ����� �� 0
8�� 3 �� ���
��� ������ ��>���
� R##S ����� �	5	�� ����	�5
������ �	�� �� ���� �� ���
����	�5
��������� �� ��� ��� ���� �� 3 � 3 �	��	�� �	���� ��
� ��	�
� ��
��	� �:���	����� ���������	��% ��� ����	�5 ����
D �� ����:	����D
*6 �� ��	
� �� ������	��� �D ���
��
8 ����� �� ��� ���5������ �0,&
���� � ��� ����	�5
��������� ;'� �� 	�5 #IIE= �D ����
	�5 ��	�
�	� �	��
�	5� ��������
� ���	
�	�� ���
	@
 	���5����
	�
�	� ;���+=% ��� ����	�5

��������� ��
	�	�� �	�� �D �� ����
�� �	5�	@
���D

0��������
���� ��
�� � ��� ����� ������� �� ��� ����	�5 ��	�
� ���	�D ���
��� �
8��� �� ������
����
��D �����5� ��� ��	�
� ��� ����
��� �	5��� ��
����� 	� �	5 C;�= "��� ��� �
� #66�/�?� �
8�� ����� � �	�5�� �����
��� �� ����	�����	�	��� ����
�	��)������% 	�
� �� ���� ���� ��	� @5���
��� ��� �
8��� �� ������
����
��D

���	�5 �� ��� 	�����
�	��� 	� ���
����� ���������% ��	� �:���	���� ���	@�� ���
��	�	�D �� �������	�5
������	
 �
8�� ��	�
�	�5 ��	�5
������ �	�� ��
���� 	� #66 /�?� ���	
�
�&< �
8���

�� 	�������� ��	� ���	
� �&< �
8�� ��	�
�	�5 �D���� �� ��5�� �
��%
���	
� �
8�� �D�
����	9�	�� �D �� ��>�	��� ��
����	��� �
8�� ����	�5

������ ��� ��
��	>�� ��� ���	
��D �D�
����	9	�5 ��� �
8�� ��	�
�	�5 ����
���� �����
��
8	�5 �����5D ����� � ���	
�
��
8 ����5��� �	�� ��� �	5��

�	5 C ������� �� ��� �
8�� ��	�
�	�5 ���������	��� ;= ��� �����	� #66�/�?� ������ ��
���� �D ���

���&� 	� ��� ����� ���
���	�5 ��D ��� ���� ���� �
8��� 	�K�
��� 	��� ��� ������8 �� ;�= ��� ������ ��

��� ����	�5 ��	�
� ��� ��� ���� #66�/�?� ���� �
8��� � �	���D�� �� ����	�����	�	��� ����
���

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

370

����� ������	
 �
8�� ���	�5 �������� ;0���	�� �� 0��
�� #IEI= ���
���	
�
��
8 �D �� ������� � ��� ���� ���� ��	�� ��� �	������� �D��

����	9�	�� �D �����D	�5 ������5��% ���	����% ����	9�	��% �� �	�� ����
�	�
�	�	��	�� �D ��	�5 ���	@�� ���& �� ����� ���	
� ��	�
� �
�	�
��
����% ����� ��
��	>��� ��� ���� ��������� �� ������ ���
��
8 ���� ���
�
8�� ���� ���� ���� ���	���� ;&��5 �� 	�5 #IIG�= �� �	�� ���� ;���	���
�� 	�5 *666�= � �����
��
8�� �D����
�	���� ��
� �D�
����	9�	�� ����	�� ���
�D�
������� ��	�� �� �	5������� ���	
� �&< �
8���

. . � ����&+�����"&���,�+� ��+)���+�!�� ��� !,������� 0)���"�+

�-��+)�"/

��� ����	�� �� ���	
� �� ���	��� ��� ����	��� ��������
8 	� �����	��	��
�D����� �� ���	9�� �	�� ��� ����� �� &-&< ��� ��������)������% �

�
	�D ���5 �	�5�� @��� ����� �� �:
����� . ��?� ;"	����� �� 	�5 *666=%
 ��� ��������
8 	� ����5	�5 � ��� �����	��� �� ��	� ������8 �����
��	�
�	�5 �� ����	�5 	� ��������� �� �	��
� �
8��� �� ���	� ����	��	���
+�������D% ��� �K��	�D �� �
8���� ������� ���D ���� ���
����	

������
��	�
��� �� ����� �
8��� �� ��� ��	�
�	�5 	� ��������� 	� ��� ���
����	

���	�% ���	
� �
8��� �� @��� ��
�	��� �� ��J���� �	 ���
����	
� ��	�� ��
��	�
�	�5 ����� ��� �
8��� ��� ���� �������� �����5� ��� ��	�
�	�5
���	
% ��� �
8��� ��
�������� �
8 	��� ��� ���	
� ���	� ��� ��������
��� 	������� ����� �	�	��	��� �� ��� ���
����	
�������	
�
������	�� � ����
� ��� �	5� ����
D �� ��� �
��	�	�D �� ��� ���
����	

������ �
8����
�	�	�� ��� ��������
� �� ��� ������8 ��
�����	�� ��� ����� ����	��� 	�
���	
� ������8�

��
����D% ������ �:���	����� ���������	��� ;���D �� 	�5 #II47 ���8�
�� 	�5 #II47 ,�
�8 �� 	� #IIG= ��� ����� ��� ���	
� �&<
� ���� ��D
�� ��� �����	�5 ����� �� �	5� ��������
� ��	�
�	�5 ���	
 ��	
� 	�
����
����
����
�	�	�D% ��� ����
D% �	5� 55��5�� �����5����% ���	�	�	�D% ��
�
��	�	�D �D ��	�5 ��� ���	
� �&< ����
�% ��
������
��� ������� ���
 �	��	��������� #66�/�?� ��	�
��� 	����
����
� ���� ���� ����
�� ���
�
�	��
���� ;&��5 �� 	�5 #IIE= !�	>�� �� ��� ������8 	� �	5��D �
����%
����� ���� ���	5� ��� ����	��� ���5� 	�����
����� ��	�
�	�5 ����
D
�>�� �� ��� �	�5��
����� �	� ���	�� �� # 4 �� ��	� �
�	��
���� 	� ����� ��
���� �
���� ��� ���
����	

������� ��
� �� ���� � ��	�
�	�5 ���	

	� ��� �
8���� �� � �������	�� ��	�
� �� �
8���� ������

�	5 4 ����� ��� ������8 �� ����� ���� �
�	��
���� ��� ��� 8�D ���	
�

��������� �� ��� ���� �� ��� ��� �	�� ���� ����� ;&��5 �� 	�5 #IIG
= ��
��� ���& � ������8 	�����
�
�� ;"�+= ����� ���
����	
 "�(�� � ���
�	�5��
����� �	�����% %% ��
������ �	�� ��
��������� ���� ���
	��D
���	5��� �� ������ ��� ��� �	�� ���� ������ �� ��� ���	
�
��
8 �� ��

� � �!"��� �" �+5

371

�	��� ��� �	�� ���� ������ 	� ��� ���� �� ���� 	� ��� �����	���� �� ����
�������� �� 	��� 5	��� �	�� ���� �	��	� ��� ���	
� �&< ���� �� 	�
��� ��
�	��� �� �	5� ��� ���	
�
��
8 �	�� 5	��� �	�� ���� ��� ���	
�
������	���:	�5 ��	�5 ��� ���& ��
�	��� 5���� �D�
����	9�	��% �	
��
��
��� ������ ���� �	�5�� @��� �������
8�� ���� ����
� �� ���	@�� ��
�	���	����� �� ��� 	��	�	��� ����� �	 # � " ���	����� ����� ���� ��
������	�� �� �	�� ���� ����
�	��% ��� �� �� ����	���:�� �D ���
	�	��
@��� ���D� ����	�5 � " � " ���
������ ��� �	5� ����	��� ���	
� �&<
���� 	� ����
�� �� �� ����� 	� ��� ������8 ��� ������ ����
���� �� ���
55��5��� ��&< ���� 	� ������	��� �D ��� �	�� ���� ������ ���� 	� ���
������8 ����� ��� �	�� ���� ������ �	�� &���5�� �� ����������� ���D
���	
��% ��� ���� 	� ���5�� 	��� *& ���
���� �� �	�� ����	�� " �
�

���	�	�5 *8 ��	>�� ��&<
������ � ����� 	� �	5 G ;&��5 �� 	�5 #IIG
=

�	5 4 � ��
��@5����� ��&< 	����
����
� ���� ���� ����
����������
� �
�	��
���� ��� 	��	�

�	��� �
�	��
���� �D��� ���������� 	�� ���	
�	�� � � ���	
� ������

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

372

�� ������% ��� ������8
� ������� � � **& ����� ��� �	5������� �� ���
�� �
� ���
��� 	� ��# ��	
� 	� ������	��� �D ��� ���
	�	�� �	��
������ �� ���
���D ���	
��

�� ��� �:���	����� �������% �� �������� � � #4 �	�� ����� 	� ��� ���	
�
�&< ���� ��	�5 � � * ��5� �	�� ���� ������ �

���	�5 �� ��� ���	5� �� ���
�	�� ���� �����% ��� # 4 �� ���� 	� ���5�� 	��� ���� ���
���� ��	
� �
�

���	�	�5 ���� #66�/�?� �	�� ����� ��� �	�5��
����� �� ��� ��
�����
�� ��
� ��� �+�#* ��� ;� � 4**�6E <�?�= ��� �	���� ���
����	
 ���	5� ��
���
��������� ���� ����	�� ��� ��	�
������ �� ��� �	�� ���� ������ ��
����	��� ��� ����
D% ��	���D
����� ����
�	�� ��	�5 �	����
�������
	�����
� ;������ �� 	�5 #III= �
� ���& �� ���	5��� �	�� ������	�
���:	�5 �	���� �	��� �� ���� #6 �� � �-)<

-�
������
��� ��� ����D ���
�	��� ����� �� ������ ��� �	� ����� ���
;���= �� ���������� ��� ��	� 	�����
����� ��	�
�	�5
��	�	�D �� ���
������8 ����� ����� �:���	����� ���� ��������� ��	�5 �K
���
������ 	�
��� ��� #66�/�?� ���
��� ��� ���5� �� ��
������ 	���� ������
5����� ��� �*# ��� ;#. �� ����� ����5D= �� �E ��� ;*C6 �� ����� ����5D=
�����
�	���D% ������ ����� �� ����� ���� �����	�� ����
�	���� ;&��5 �� 	�5
#IIE= ��� ��� 	�����
����� ��	�
�	�5
��	�	�D �� ��� ������8 �� ���
����������� �D ��	�5 ����	����D ��������% ��� ����
D ��	���	�� ����
��
�� ;"���9D8 �� 0��
�� #IIC= �� ��� ����� �� ��� ������8 ���
��
�	���� �� ���� ����� �� @:�� �� �	���� �� ���	� ��� �	�� ����� �
� ����
@��� �����	�� 	�� �	��D ������ � ��� �	�5�� �+�#*
����� ��� 	��� 	�� ���
�	�� ���� �� ��

�������D ��
�	���% �
� ���� ���� �����	�� 	�� ������ 	���
��� �	�� ���� �� ��� ����� ���� �D ��
��@5��	�5 ��� �� �	�� ���� �����
�	5 E ����� ���������	�� �� ��� �����
�� ��	�5 ��� ����� 	� ��� ������8
����� �	�� ����� �� �K
��� 	� ��� #66�/�?� ���
��� ��� �������� ��	5���
�� "��� 6 �� "��� # ���� 6#6# �� 6### �����
�	���D ��� ��
�� ����� ��
��� ������	���:�� ���& ������� �	��
��D ���� ��� ������ �� ��� ��
�	����

�	5 G �	�� ���� ���
�	�� 	� � ��&< 	����
����
� ���� ���� �	�� ���� ����� �	�� &���5�� �� @���

���D ���	
��

� � �!"��� �" �+5

373

��� ��� ��� ����� ����� �
� ���� ��

�������D ��
�	��� 	�� ��� ������% ���
�� �	�� ���� ������ ��	��D ��
��@5��� �	��	� �	�5�� �	� ���	�� �� �����	�
	��� ��� �	�� ���� �� ��� ����� ���� "��� ��� �
� ���� ��� ��

�������D
��
�	��� ��� ������ �� ��� ����� 	� 	�� ��� �	�� ���� ��� ���5� �	�� ����
��	�
�	�5 ������ ����
D ��	�5 ��	� ��
��	>�� �� ���
��������� ���� ��
4 ��

��	� �
�	��
���� ���������� ��
�	
� �� �
���� ������	�� �� ���
�
����	
��D ��	�
��� �
8����� �� ��	�	�� �� �	�5���
�����

���% �� ���
����������� ���
�� ����	
�� ��
� � ����	
��	�5 ��	�5 ��� ��� ���	
�
����D����� ��
��������� ;&��5 �� 	�5 *666= �	�
� ���
�	��
���������
	� ��� �	�� ���� ������ �� ��� �
�� �	�� ��� ������ �� ����� ;&��5 �� 	�5
#IIG
=% �	���D ��	�5 ������ ��5�% � � .% �
��� ��� 	����
����
� �� ��
� � 43 ����� �	����� �:	�5 ��� ����� ���5�� �	5�	@
���D �� �+�*3
;� � #�*33#4 /)9= 	�
����� � ��� �	�5��
����� �� ��� �� #6�/)9
	�������	�� ���
���	�5 ���
����	
� �� ����% � E6�/�?� 	����
����
� �	�� �
���5� ��	� 	�����
����� ��	�
�	�5 ����� �� E66 �� 	� ���	��� �� ��
�
43����� �
�	��
����%
�������
������8 ���� ��� �	�	� ��� ��� ��������
�
�	5�	@
���D ;&��5 �� 	�5 #IIE�= !��	����D% ��� �	����	���	�D �� ��� ����
���8 	� ������	��� �D ���
�������
������8 �	�
� ��� ������	���:�� ��
����� ���	
�
��������� 	� ��� ����
� �� 	���5����% �� ���	��� ��	�
������8 	� ��
�	
� ��� ������% �	5������� ����	���
����� 	����
����
� �D��
���� �� �	5� ��������
� ��	�
�	�5 ���	
�

�	5 E &��������	�� �� ��	� �	�� ���� ��	�
�	�5 ������� ��� ����� ��	�5 ��� ��&< 	����
����
� 	�

@:�� ��
�	���
��@5���	�� ��� ���5� ������ ����
D �� ��� �����	�� �� # 4 ��

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

374

&� ���������� ���$
� �����' ����' �
 "���

�� ����	�� ��� ���
����	
 ��������
8 	������ ���� ���������D ����	�5
��	�
���% ������	
� ��	�
�	�5 ��
��	>��� ����	�� ����� �����	�� -� �	��

��� # � * ���������	�5 ���	
� �
8�� ��	�
� ���
� ��
�
��� �� ����
����
�����:% ��������� ���	
� ��	�
�	�5 ���	
� �	�� ��� ����
D

3 # # � * ��,����!��"/ �,,��0��+�, 0�+2�� �-��+)

������5� ��� ����	��� �
�	��
����� ��5��D ������ ��� ��	� ��	�
�	�5

��	�	�D �� ���	
� �&< �D�����% ��� 	����
����
�� ��	�� ���D ���� ����
����� �� ���
����	

������ �� ���
�� �� ��� ���	
� �
8�� ��	�
� ���
�	���
	� ��
�	�� . *% ���
����	
 �	5��� �� ��>�	��� �� ��	55�� ,	"��. ���	
�
��	�
��� 	� ���
������ ��� ����
����������
� �
�	��
���� 	� ��
�	�� . .
��� ���� ���
����	

������ �� ��� ������ ���D �������� ��
�	��� �	�� ����
���	�5 <:	��� �����5���� �	�� �	�	��� ���D
� ��
�	���� 	�
��������� ������	
� ������8� ����� ���	
� ������ ��
�5�	�	�� 	� ���� ��
��	55�� � ������	
� �
8�� ����	�5 ��	�
� ��	� ����
� ����	��� �� ���
������
� ���� ���
����	
 ���
���	�5 ��
�	���� ��� �	�	��� ����
D

�D
���	�	�5 ������	
� �
8�� ����� ��
�5�	�	�� �	�� � ������	
�
�
8�� ��	�
�% ���������% ���������	�5 ���	
� ����
� ��
������
���
��� �
����	
 ���	5� �� # � * ���������	�5 ���	
� ���� 	� ����� 	� �	5 I
���	
� �&< �
8��� ����� ��� 	���� ���� ����� ����	9�	�� ���	���� ;0�=
	� ���� �� ������ ��� ���	
�
��
8 ���� ��� �� ��� @��� ���& ;���&#=
	� ��� �	�� ����� �	���� ;B#6 ��= �� ������	���: �	�5�� ������ �	� ����
��� 	�
��	�5 �
8�� ����� ��	�5 ��� �:��
��� �
8��
��
8 ����� ��	�
������ �	� 	� ���� ��
������ ��
��� ���& ;���&*= ��	
� 	�
��@5����
� ����	�5 ��	�
� �D �	���D �K���	�5 ��� �J��� ���	�	�� �� ��� ��� ����
���
����� �� ��� ����% ��� �	9� �� ��� ��	�
�	�5 �	����
� �� 	�
����� ��
��	�
� ��� ����	��� ������
���	��� 	� ��� �
8�� �� ��� ������ ���� � N#M �	�
����
��� 	� ��� �
8�� ������ � ���&#
���� ��� �
8�� �� �� ���	
��D
��	�
��� �� ��� ������ ���� ;�!� #= �� ��� �
8�� ����	�5 ��	�
� -��� ���
������ �	� 	� N6M% ��� �
8�� 	� ��L�
��� � ���&* ��
������ �� ��
�
����D ������ ;�!� *= ��	� ������ ����� � ������	
� ���� �� �����
������D ����� �
8��� �� ��� �� ��� ������ ����� �	���D �D ���	�5 �	�5��
�	� ���� ��� ������ �D�
����	9�	�� �� ��� ��	�
� 	�
�	���� �D ��	�5
�����
��
8	�5 �
���� ����� ��� ���	
�
��
8 ����5��� �	�� ��� �
8�� 	� �
�����5��� ����	9�	�� ��

���� ��� ��� ������	
� ������ ���
���	�5
���D% ����� @��� ���5�� 	� ���� �� ��J�� ��� �
8�� ��	�� �� �����	�5 ���
	���� ���� �� ���&* �� ��� 	� ���� � ��� ������ �� ���&# �� ���	�D
��� ������	���:�� ������ ����� �� ��A
	��� ����� �� ��	55�� ��� ��	�
�	�5
�����	�� �� ���&* �� ���	
� 	������ ;��= 	� 	������� ������� ���&#

� � �!"��� �" �+5

375

�� ��� 	��	�� ��� �� ����
� ���	
� �����
8 �	��	� ��� �D���� +�
�	�5
����	��� # � * ���	
� ����� ������ ���
������
�	�� �� ��5� �
��% ��D��
�D�� ��������� ����	�5 ������8�

3 * �P0���<�"��, &�<�"�������"

�� ���������� ��� �	� ������	
� ������ ��
�5�	�	�� �� �
8�� ��	�
�	�5
��	�5 ��� ���������	�5 �
����% ��� ���� ���
�	��� 	� �	5 I ��
������
���
;/���8 �� 	�5 #IIG= ��� �J��� ���	�	�� ��� ��� ��� 	� ���&#% ��	
� ����
����� ��� ������ ��
�5�	�	��% 	� ���
�	��� �D �����&# � � � ��	����* ����� #?�
	� ��� �	����� �� ��� 	�
��	�5 �� ��� ��	�
�	�5 �	���� ��� ���&* 	�
��
� �	��� �� ��� 	�
�

������� � ���	�� ���	
� �
8�� ��� �J���
���	�	�� ��� ��� ��� 	� ���&* 	� ���
�	��� �D �����&* � � � ��	����* �����
� � �� �� � 	� ��� ������ �� �	�� 	� ��� �
8��

��� ��� �:���	����� ���������	��% #�� � *C6�/�?� �
8��� ���� 5���
����� ���� #��� ������ ��	���� ���� "��',� ���� �������� �D
���
�����	�� ��5� �	5 #6 ����� ��� �	�	�5 �	5�� �� �:���	����� ����
�	��
�� ��� ������	� ���� �
8��� ���� 	� ��� �:���	���� ��� @��� �	� 	�
��
8
����� �����5����D ����	9�� �� ��� �����>���� �� ������ 	� ��� �
8�� �
@:�� ���D ���� ��� ����	9�	�� ���	���� � �
� ���� 	� ���� �� �	5� ���

��
8 �	�� ��� ������	�� ������ �	� 	� ��� ����� �� ��	� ���	��% �
8��
�	�� L�� �����5� ��� ������8 �� �
� ���� �	�� ��� ��	>�� �	� ���� ���
����� �� ����� ��� �
8�� �� 	�� ����	��	�� �� ��	� �:���	����% ���D �� *�
	� ���� �� ��� ������ �	� * ������ ��� �
8�� �����5� ��� ���� ��	� �	� ��
�������� �	�� N#M �� N6M �� ���� ��� �����	�� �� ��� # � * ������	
�
����	�5 ��	�
� �	�
� ����� �	�� �� ��
�� � � 	������ �� 3 ��% ����	����
�	�	��� ����
���
���� �	��	�5�	�� ��� 	��	�	��� �	�� �� ��� ����� ��
������% ��� ��� 	���� �
8��� ���� � N��	��� ��	5��M �� N������ ��	5��M 	�
�	5 #6 ��� ����� ������� N###M �� N#6#M �����
�	���D ��� �	�	�5 �	5��
�� ������� �� ��� ����	�5 �:���	���� �� ����� 	� �	5 ## 0
8��� �	�� N#M
� ����� �	� ���	�	�� * �� ��	�
��� �D ���&* �� �!� # ������ �
8���

�	5 I �
����	
 �� # � * ������	
� �
8�� ��	�
� ��	�5 ���
�
��� ���&� ��� ������ ��
�5�	�	��

�� �
8�� ����	�5

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

376

�	�� N6M 	� �	� ���	�	�� * �� ��L�
��� �D ���&* ��
������ �� �!� *
"��� ��� ��� N��	��� ��	5��M �
8��� ��
����
��D ��	�
��� �� �!� #% �� ���
N������ ��	5��M �
8��� �� ��L�
��� �� �!� *

3 . &��+!����" �"& �!�!�� -��2

��� ��� ���&� 	� ���
�
���
��@5���	�� ����	�� ��� 8�D ���
�	���	�D
��� ��� ���	
� ���������	�5 ��	�
� -�	�� ��� @��� ���& ���� ��	�
�	�5

�	5 #6 �	�	�5 �	5�� �� �:���	����� ���������� �� ��� �
8��� ���� �� ���������� ��� # � *

���	
� �
8�� ��	�
� ��� 	��	�	��� ������ 	� ��� *C6 /�?� �
8��� �� ��� �������� �� ��� ����	����

�	�	��� ����
��� ��� ��� �
8���
� �� �	��	�5�	���� �D ���	� 55��5�� ���	����

�	5 ## ������� �� ��� ���	
� �
8�� ����	�5 �:���	���� ��	�5 ��� # � * �
8�� ��	�
� ;= �	�	�5 �	5��

�� ��� ��
�	��� ������ �� ;�= ������ �� ��� # � * ��	�
� � ���� �� ����	��� �	�	��� ����
���

� � �!"��� �" �+5

377

�	���� ��� 	� ��
� ������� 	� ����	�� ��� ��� ��� ��
����D �	��% ���
���& �������	�5 ��� �
8�� ��	�
�	�5 �����	�� �� �	���� ����	��
��	
� �D ����
� �� �:
��� ��� ��
����D �	�� 0
8��� ���
���	� ��D
�	�� �D ���������
�����5� �� ��� �D���� +���	��� #666��	� �
8�� �
�	����� �� *C6 /�?� ��� �
8�� �	�� �� 3 �� 	� ����:	����D #6 �	��� ���
�D�	
� ��
����D �	�� �� ��� ��� �� ��� ��� ��
�����% ��� ���	���� �� ���
��	�
�	�5 �	���� ��
D� �:������	��D ;���	��� *666= ��	� �D �������D
J�
� ��� 	��	�	��� �	�� �� ��� �
8�� �D��� ��
��� � ���	����
����
�	�� ���� ��� ��5	��	�5 �� ��� ��� �� ��� �
8��

��

������� ���5�� �
8���% ����� ��
��	>��� �D �� ���	�� ��
�	��	� L�% ��	���� ��	�
�	�5 �	���� ��� ��� ����	�� �� ��� �
8��
��� �
���� 	�������
��
8	�5 ���&* �	�� ������
������ ������ ��� �
�
�
8�� +��
8	�5 ��� ���	
� ��	�
� ����D #66 ��% ��� 	����
�% �	��	��
����	���D L� �� ���� ��	�
�	�5 �	���� ��� ��� ����	�� �� ��� �
8��
������� ����
� 	� �� ������� ��� ���
��	
� �	� �� ��� ��� ���
������
����	�5 ���
��	��� 	� ��� ���
� �� ��
����� K��� ���� ��� ��	�
�	�5
����� �� ���� 	�	�	��� �� ������� ��	� ��
����D ��	� ��
��	>�� ����	��
��� ��	�
�	�5 �	���� �� ���	� ���� ��� ���5�� ���	�� �� �	�� �	�� ����
��	���� ���	����

������%
���
� # � * ����	�5 ��	�
��� �D �� 	���5���� ���� ��� ���
�������� ��	�5 ��� 	���5��	�� ��
��	>��� ����	����D ���
�	��� 	� ��
�	�� * 3
,�5���
�� 	���5��	�� 	����
����
�	�5 ��D �� ����� ��	�
��� ������ ���

������
�	�� �� ���������	�5 ���	
� ��	�
��� �	�� ��D �����

(� ���� ����� ��� ���
�
�'� ���
����

��� ���	�� �� ����� ��� �����	��	�� �	�8� �� ��	�
�	�5 �D����� �������
�� �������� ��
� � ��� ������ �	�����	��% ���
� �����% ������5��
��
	�5% �� �	� ��� ;��� �� 	�5 #IIE= &�����	�5 �� ��� ���
	@
 ���	
�
�	��% ��� ���	�� �� ����� �D �� �	���� ��������������9��� ;"�(= ��
����������9��� ;�(= �	��
���	� ����� �	��� �� ���D
D
�� �� ���	
� �����
�	��� ��5����� ���	
� ;�0-<&=
� �� �������� ���� ��
�	��� ���
���	��� �� ����� �����5� ������	
� �����
������	��

�����
������	�� ���� "�(�� �(�� �(�� "�(� @��� ���	

�����	
�	�� �D�����
� ��

����	���� ������	
��D ��	�5 ��� ���&
�D
��5	�5 ���
��@5���	�� �� ��� �� ��
������ 	���� ����� ��
��D	�5 ��� �	9� �� ��� ��	�
�	�5 �	����% ��� ���	��� �����
������	��
�
��
�	���� �� ��	�	�� �� 	�� ��� � ����� �	��� ��5����� ���	
�% ���
���&
� ��� ���
�	�� � ������5��
�������� 	� ��� ������5�� � ���
�� 	���� ���� �	J��� ���� ��� � ���
������ ���� ��� ���5���� ��� ��	�5
��� ���& �� ������� �����
�������	�� ;"�(�� �(=% �����
�	�5 ;�(��
"�(=% �� ������5��
������	�� �	�� �� ���	���� ��	� ��
�	��

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

378

C # 0!,�� +�<0������"% "�(�� �(+�"1�����"

�� ������� "�(�� �(
������	��% ��� ���& 	� ���� �� ����� � "�(
�������� �� ����� ��� 	�
��	�5 "�(�� ����� ������ ��� ��
	���� ���� �� ��� ���& ��	�� ���
������ 	���� 	� �	
���
��� ���	
�
��
8
��� ���& �J�
�	���D ������ ��� "�(�� ����� ��	
� N
���������M ���
�� �� ��� �	��� �� ��� ��	�
�	�5 �	���� ��� ���D
D
�� �� ��� ��� �(
�� �����
� ��
��������� �D
��5	�5 ��� �	9� �� ��� ��	�
�	�5 �	����

�� �:���	������D ���������� �� �����
�������	��% � "�(��
����� � ��� ���& 	���� ���� 	� 5������� �D 	�����	�5 ,	"��. ���
����
���	
 �������� ������� +- ���� ����
� �� ��� ���& �� 	���� ����
0	
���
��� ������ �� 	�K�
��� 	��� ���
������ ���� �	����� �D ������	��
�
�
������ ����� ������� ��� ��� �� ����� ��	�
�	�5 �	���� �� N6M
�	� 	� ������� 	� ��� "�(�� �����% ����	�5 	� ��	�
��� �� ��� ������ ����
)������% ����	�� �� ��� N#M �	� 	� ��� "�(���� �� ����� �	�� ��
��	�
��� �� ��� ���& ������ ���� ��� �	9� �� ��� ����� ��� 	� ��	�
��� ��
��� ������ 	� ������	��� �D ��� �	9� �� ��� ��	�
�	�5 �	���� �	5 #*;=
����� ��� ������� �� ��� "�(�� �(�����
������	�� ���������	�� ���
����� ��
� ����� ��� "�(�	5�� �� ��� ����� ��
� ����� ���
������
����	�5 �(�	5�� ����
������	�� ��� �������� �(�� ����� ���	���
�� 3 �� �	����������� ;���= ����������� ��� �����
�������	�� ����
"�(�� �(�� ����� 	� �	5 #. ��� � �+�3E "�(*.# � # �����������
�� ��>���
� ��� ������� ���� ��	5�� ����� �����D ��� ��� �������
��	�
�	�5 �	���� �� #. G �� ��	� ����	�� 	� �:��
��� � ��� ����
�	�� ��
��� ���	
� ��	�
� ������ ���	���� � ��� ��	�
�	�5 �	���� 	� ����
�� 	�
������� �	���
���� ����� ������� �� �� ��	�
��� �� ��� ������

C * 0!,�� �����+)�"/% �(�� "�(���<�� +�"1�����"

+������	�� ���� �(�� "�(
� �� ��������� �����5� �	J�����
��@5�
���	�� �� �(�������� �� ����� ������ ��� ���
� 	���� ���� �� ���

�	5 #* ��� ���	
� �����
������	�� �������� ;=
������	�� �� � "�(�+�3E #4��	� �� ������ ;���=

�� �(�� ����� �	�� 3 �� ������ ;������= � ����� �� ����	�����	�	��� ����
�	�� �D����% �� ;�=

�(�� "�(
������	�� �� ����� �����
�	�5 �� # . �� ����� ;� ������� �D ���
������	��= �� CE ��

� � �!"��� �" �+5

379

���& ��	�� ��� �	5�� � ��� �� 	���� ���� 	� +- ��� �� ��� ��	�
�	�5
�	���� ����	�� 	� ��� �� ��� �� �	� ���	��% ��� ������ �� ��� ���& �	�� ��
� "�(�� ����� �	�� ���
���������	�5 �� ������	��

�� �:���	������D ���	�D ����� �����
�	�5% ������ ���D ������� 	� 	��
������ 	��� ��� ���& ���� �� �K��� ��� �	���
����� �� ��� ��� ���� ���

����� �� ��� ���� � +- �	��� ���� 	�
����
��� �� ��� 	���� �� ���� ���
	�
��	�5 �(�� ����� 	� ���	��� �D ������	�5 ��� ������ �� @���
������
8�� ����% ��	
� 5������� # .��� ������ ��	� �(�� ����� 	�
	�K�
��� 	��� ��� ���&
������ ���� -��� ��� +- �	5�� ������ ��� ��
	���� ���� �� ��� ���&% ��� �	5�� 	� ���	� 	��� ��� ����� ��� ����� 	�

��
8�	�� ��
�������
��
8�	�� �	��
�	��� -��� ����� 	� N6M 	� ��� �(
����� � ���
������ ����% ��� ���&
�� � ���� �	���� ��� +- �	5��
�����	�5 	� ���� �	��
�	��� �:���	��
�� ��� ��� 5	� �� ���� �� 	�
��L�
��� �
8 ����� ��� ����
�)������% ���� N#M 	� ������� 	� ��� �(
�� �����% ��� ����� ������� ��� ��� ��
����� ��	�
�	�5 �	����%
��	
�
���� ��� +- �	5�� 	� ��� �	���� �� �� ��	�
��� �� ��� ������ ����

��� �(�	
���
��� ����� �����
� �� �����
��� 	��� ��
� ������
"�(����� �D ����	�5 ��� ��� �J��� ������	���D ��� 	����
�% ��� �������
�� �����
�	�5 ������ ���� # . �� CE �� � ����� 	� �	5 #*;�= 	��	
�� ���
�	�	�D �� ������� �(�� "�(
������	�� �� �� ������ ����
�	�5
6 /�?� ��� # .��� ����� 	� ��� �	5 #;�= 	� ���	��� �D �����	�5 ���
���
������	�� �� ��� 	����
������ ������ �� ��� CE��� ������ ����
���	��� �D �����	�5 ��� ��	�
�	�5 �	���� ���� ����	�5 ��� ������ ���D
������� ������	���D �� ���������� ��� ���	�	�	�D �� ��� ���	
�% ���

�	5 #. �	� ����� ��� ����������� ��� ���� "�(�� �(;�����
�������	��= �� �(�� "�(;�����

�����
�	�5= �����
������	�� ��� "�(�� �(% ��� ��	�
�	�5 �	���� �	9�� �� *E �� ;�>����= �� #. G ��

;�	�����= ���� 	�����	5��� ��� �(�� "�(% ��� ��� �� ������� �D @:	�5 ��� +- 	���� ����� ��

��D	�5 ���
������ ����� ;�>����= �� ��� �D @:	�5 ���
������ ����� �� ��D	�5 ��� +- 	���� �����

;�	�����= �	��������� ������5��
������	�� �� ���
�	���� �	�� ��� �(�� "�(�����
���

����	��

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

380

�	J����� ��� ����������� ���� ��������� ��� �(�� "�(
������	�� �
����� 	� �	5 #. ��� @:�� �� ���	�� +- 	���� �����% ���
������
����� �� ��	�� �� �����
� ��� ��� ����� �	�� ��� �>��� �D����� ���
��� ����� ���������� 	��	
��� �	�� �	���� �D�����% @:��
������
����� �� ���� ��	�� ��� +- 	���� ����� ��	�� ���
����� ����������
��� ��� �� B#6�##
� ��
�	���� ��� �	���� �����	�5 ��5	��

C . -�1�,�"/�) +�"1�����"

-�����5��
������	��
� ��

����	���� ��	�5 ��� ���& 	� ��� ����
���5�� �� ��� ���	
� 	���� �	5�� �	J��� ���� ��� �� ���
������ �	5��
�����
������	�� ���� �(�� "�(
� ��
�	���� �	�� �	���������
������5��
������	��% ��� 	����
�% 	� � �(�� ����� �����	�5 ���

������ ���� �� ��� ���& �� �	J����� ������5�� ��� ��� �� ��� +-
����
� � ��� �� 	���� ���� �� ��	�
��% ��� ��� "�(�������� ��
����� �	�� �� 	���	���� ���� ��� ������5�� �� ��� +- ����
� ���
���
������ ������5�� � ��� ������ ���� ��� �	��	�� ��� ��� �� ����	�D �
��� ��	5	�� �(�� ����� ��	� ������5��
������	�� ��
��	>�� �� ����
������ ��������� �J�
�� �� 	�
���� �� �����	�5 � �	5� �	� ��� ;+�����
�� 	�5 #III= �� ��	�	��% ��� �	5��������	�� ��	� �� ��� �� �� ��� ���
������5�� 	� �	5�	@
���D ����
�� �	�
� ��� �� �� ��� ��	�D 	���� �����
	� 	���	���� ��
��� ��
� ���	
� ����
� ;(��� *666= -� ���	��� ���	���
�����	�� �� �	��������� ������5�� �� �(�� "�(
������	�� �	��
��� �� #6�## � ����� 	� �	5 #.

)� *�' �������� ������ �������' ����
��

��
�����	
�	��� ��
�����5D ����� ����� �	5��� �	����� �D�����%

�����	
�	��� ���� �� ���������� �>�	����� �	�� ��>�	�� ����	����
�:
���	�5 #66 /)9 -�	�� ��
� ����	����
���� �� ��
�	
��D
�	����
��	�5 ������� �D ���
����	
 ���������� �D�����% ��� ���	
� ��
��	>���
�D �J�� �����	�� �� ��	�	�� �� �	5����	
 ����������� �� �	5�������
���	
�
�����	
�	�� �	5���% ����������� �� ����� ���	
� �������� ��
������ 	� ���� ���
����
��D% @��� ���	
 �������% ���	
� ��5	�5% �� �	��
���	
� ���	
� ����5���D ����� ����������� ��>�	�� �	5� �������
�������	�� �� �����	�� ���	���	�5 �� ��� ��
�	��� ���	
� ������� <�D
��
��	>��� ��� ���� ���� �� ������ ��������� ���	
� �������� ����8

���� �� ���� �:����	���D 	� �����
� ��� �� ��
� ��� ���8D ��
����D
���
�����
	� �D����� ���	�	��� ���	
�
������	�� ��
��	>��� ��� ���D
���� ���	
� ����	���	�D 	� ���8 ����	�� ��>�	�� �	5� ���	
� ������
����� �D����� �D�	
��D ��>�	�� �����	�	�� ���	
� �	5�� �� �� ��� ��	����

� � �!"��� �" �+5

381

��� �	�5�������% ��	���D �������� "���	��� ���� �	����� ��� ��� ����
���� �:����	���D � ���	
� ������� ��� ��>�	�� ���5 @��� ���5��� �� �	5�

������ ����� ������ ��� ��A
	��� ����
�	�� �� ��� ������ �	5�� ;"�����
�� &��� #II#= "�� ����
��� �� ���	
� ����	�5 ��	�5 ����	���	�	�� 	�
���� ��� ��
����D ���� ��������� �D ������ 5����� �� ������ ����� ��
��	
�	�� ��� �� ����	�� ���� �� ��� �	�	��	��� �� ���	�	��� ���	
�
��
��	>��� ;�	��� �� 	� #II37 2�5�
�	 �� ����� #IIE7 &	�9 �� 	�5 #III�=

�� �� ��� ����	����D �����������% ��� ���& 	� � 	���
��	��� ���

�����
	� ���	
� �D����� ��� �� 	�� ���
������ ����� ����5D �� 	���5��
�	�� ������	� ��	� ��
�	�� �	�
����� ��� �D���� ���������	��� ��� ���D
��� ���& � � ���5 ���	
� ����	�5 5�� �� �
� �D����% ����� ���	
��
���� ���� �� 	������
� �	�� �	��	�� ������� ��� ����	�5 �	���� �� ���
�	5�� ������� ���� �	�5������� �� �����	�� �����	�� �� ��� ���	
�
����	�5 ������� �� ���������

4 # � ��"/,���)�� �0��+�, ��<0,�"/ �'���<

�	�5������� ���	
� ���������� �D����� �� ����
	��D 	������� ��� ���
��
�	�5 �� ��D9	�5 ���������	�	��% ���5 ���	
� �������� ����� �	5���
�D �� 5������� ���� �����D ���	
� ����
� �	��
��D �� ��������� �	5�
����	��� ���5 ���
��	
� ������� �������� ���� � ���	
�
��	�� -�
��� ��������� ����	�5 �D����
���� �� ����
�	�5 �	�5������� ���	
�
�������� �	�� 	�����	�D �������� ����	���� �:
���	�5 #66 /)9 ;&��5
�� 	�5 #IIE
= �� ��	�	�� �� �����D	�5 ��� ����	��� ����
�	�� ���
����	
�%
��� �D���� ���� � ���	
�
������ �	5�� �	�� B# �� �� ����� ����5D ��� ���
�	�
��������� �� ��� �D���� ����� 	� �	5 #3 �� ��� �����	�5 �����
����	
��� �� ���& ���� � � ������� ����	�5 5�� ��� 	�
��	�5
�	�5������� ���	
� �	5�� 	� @��� ����	
��� 	��� ��

���	��
��	��

���	�5 ��
��� �����	�	�� ��� �� ��� ��
� ����	�5
��
8 �
� �	5��
��D 	� ���� ���
	��� ��� 	���� �� ���& �	�� ����� ����	�5 �	���� ��� 	������
������� ��� �	5��
��	�� 	� ���
	���D ���D�� 	� �	�� �	�� �����
� �� ���
����	�5
��
8 ��
� ��� �
� ����	�5 �����	�� �8�� ��
� � �	J�����
����	�� �� ��� �	5�� ��
��� ��� ������� 	� ������ � ���
��
8	�5 ��� ��
��� ���&% ���D ��������	��� ���	
�� �� ��>�	��� �� �	���D ��� ������
������

�����5�
��D	�5 �� ���D	�5 ��� 	�
��	�5 �	5��% ��� �����	�5 �����
����	
��� ����	��� �	�� �	��	�� ������� ��� ����	�5
��
8 �� ���5
������� ��� ����	
���
���	��� ��
�
��� ��5�� �� @��� ���	
�� ;&��5
�� 	�5 #IIG= �� ��� �:���	����� ���������	�� � � 3 ��5� ����	
���
����
���� ��
����� �� �8� *� � #4
��	�� �� ��� 	�
��	�5 ������� ���
������ �� #66�<)9 "��',� ���� � #.#. �� �	�� .#��� ����� �	���
;�-)<= �� �������� �� �����
� ������% N�	�5�������M �	5�� ����� ���

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

382

�� . #*C <)9 �D ���	��	�5 ��	� ����� �� ���	�5 	� �����5� 5��	�5��	�

�������	�� ��5�% #��� ���	
�
��
8 �D�
����	9�� �	�� ��� �	5�� ����
���� �� ��� 5������� ��� �� ����	�5 ��� �� @:�� � ��� ���� �����
�	�	�� ���>���
D �� #66 <)9 ��� ��� ����	�5
��
8 5	�	�5 � � #6 �� ���
����	�5 �	���� ��
����� �� �� G �� � �-)< �� ��� ������� �J���%
�% ��� ����	
��� ��5� �� ��� �� #6 �� ��� ������ �� ��� ����� ����	
��� ��
���	@�� �D � ��� ��
�������� ��� ��� ������ �����5� ��� ����
���� �
������ @���� ������	�5 ��� 	��	�� ��� ���
8�� ������� ����������
��	��	�� �	���D% ��� ���& �� ���
��	
��D �	��� � 3C �� �� ���	
��D

��
8�� �	�� #��� ������ �	�� � ����5D �� 466 �� 0���	9�	�� �	�
�	�	��	��
�� ���� � ��� ������ �� ��� ���& �� �	��	�5�	�� ��� ������ �	5�� ����
���
��
8

�� ���������� ��� �	�5�������
��	�	�D �� ��� �D����% ��� .#��� �	5��
����� �� ���	� �������D �D @���
������% �� ��
���	��� ��
� ��� ��� ���
������ ���� ������� �D E6 �� ��
���� � ��	���D ������� �	5 #C;=
����� ��� ������ ����� ������� �	��
��D ����
��� �D *6�/)9 ��������
��
��� �������� �D C6�/)9 ��
	����
��� ���� ��	� ��
�% 	� 	� �	A
��� ��
�	��	�5�	�� ��� ��� ������ ���� �
� ����� ��� ������% �������% �� ��
�

�������D �������� �D ��� ����	�5 �D���� � ����� 	� �	5 #C;�= ��
������
�� ��� �	��
� ����
�	�� ������% ��� ����	��� �� ��� ���������
��� ��
��
	����
��� ������	�5 ��� ���& ������ �� ���� ��� #C6 <)9

�D
����	�5 "% �% �� & ������	���D% ��	� �D���� ����	��� �
����
�
�	��
���� ��� ��	��D �� ����	�5 ���	
�	��� ��� ��	� ���������	��%
�D����
���� �� ����	�5 �������� �� �� *� � #46 �� 	� ����	�� �	��
����	��� 5����� ��� #66 /)9 	� ����	��� �	�
� � � #6 ��% ��� ��:� �	�5���
���� �����
� �� ������ �� ���	����� 	� ��� �	�� ���� *�� � #46 ��
���D �� ������ ���	5��% ��� �� ����	�5 ��� �� ������� �������	�� �� ���
�D����
� �� 	������� !�	�5 ���� �	�� �	5��� �����	�	�� ���% ��� ��

�	5 #3 �
����	
 �� �	�5������� ������	
� ����	�5 ��
	����
���

� � �!"��� �" �+5

383

����	�5 ��� �D �� 	�
����� �� ���� ��� #6 /)9% �	�	��� ���D �D ���
��� ��
����D �	�� ,	8��	��% ��� �	�� ���D ������� �����	�� ����	�5
������ ��
����
��	�� �������� 	� ����
�� -� �:��
� ��� ������ �D����
�����D	�5 � 	���5���� ���	
� �	�� ��
���� �� ����	�5 ���	
� ����
����� �	�� ����	���� ����
�	�5 # �)9

4 * � +�"��"!�!�% ���,���<� �0��+�, ��<0,�"/ �'���<

-�	�� ��� ����	��� �D���� 	� � �:
������
��	��� ��� �	�5������� ����
�����% ����
�	�� �� �����	�	�� �	5��� ��
� � ����� 	�
�����	
�	�� �D��
��� �� ��� � 	������� ���	
�	�� ��� ���	
� ���� �� ���������� ���
5�� �� �����	�� ���	
� ����	�5 	� �� ����
�
���	�����% �����	�	�� �	5���
��	�5 �	�� �	��	�� ��
��	>��� �	�	�� �� ����� 	� ���
����	
 ��
	����
����
��	� �D���� ����	��� ������� L�:	�	�	�D �� 	� ���� ��
�	
� ��� �������	�5
���
���% �	5� ��������
� ����	�5 �D�����

��� �����	��% ������� ���	
� ����	�5 �D���� 	� ����� 	� �	5 #4 ���
�D���� ���� �������
� ��
��	
� �	����� 	� ��� ��� �� ��� ���	
�
��
8
�� 5������
���	����� �	�� ���D ������� ��� ���	
� �	5�� �� ���
��
8
��	55��	�5 ��� ����	�5 �����	�� 	� ��� ���& ��� ��
��	
� �	�����
�	���D
���	��� ��
������
��� �	���� ��
��� �� ���
����� �� � E�	�
�
���8�� �� ��
	����� � ���>���
D �� #6)9 �D
���	������D ��D	�5 ���
���	
�
��
8 ���� ��	� ��5�% ����	�� �� ��� ���	
� �	5��
� �� �:��
���
�� �	���D�� �� ��� ����	��� ��
	����
��� ��	55���� � ��� �	�����
��
	���	�� ���>���
D

�� �:���	������D ���������� ��� �D���� ;������ �� 	�5 *666=% ��� ������
�� ������
8�� ���	�������� @��� ���� ;<,��&�,= �� ���	� �� ��
��	@�� �� 5������ �D�
����	9�� ���	
�
��
8 �� �	5�� ������ ��� <,�
�&�, �����
�� * E��� ������ �	�� �D������	
 ��
�� ���@�� � # CC ��
�	�� �����	�	�� ��� �� #6 /)9 ��� �	5�� ��� 	� ���	���D ��
��������
���� ������ �����	�	�� ��� �� #6F#46 /)9 ��	�5 �������5� �����
������ @��� ���D ���	
� �� 	������
�� 	��� ��� �	5�� 	���� �� ��� ���	
�
����	�5 5�� ��� ����5D �� �
� �	5�� ����� 	� ��� ��	� �� ���D # C ��

�	5 #C ������� �� ��� �	�5������� ���	
� ����	�5 ��
	����
���� ;= ��� ������ � ���� �� *6�/)9

����	�����	�	��� ����
��� �� ;�= ��� ������ ��

�������D �������� ��	�5 ��� �	�5������� ������

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

384

��� #6�/)9 ���	
�
��
8 ��� ��	55��� ��� ����	�5 �����	�� @��� �����
�����5� ��� ��
��	
� �	�����% ��	
� ��	�� ��� ���	
� ���D ���� 36���
��5� -	�� ��� ��� 	� ��� ���& �	��� � #.6 ��%
��
8 ����� ����5D ��
���D *6 �� 	� ��>�	��� �� ��	55�� ��� ����	�5 �����	�� ��� ���& ����	�5
�	���� �� ��� �� �	��� �� 3 G �� � �-)< �� ���	
� ���5� �����
����� �	�� � ����� ��� �� G66)9 ��
�	��� ��� ���	
��D ������ �	5�� �
��� ���& ������ �� ��
	����
��� �	�� #66�<)9 ����	��� 	� ���� ��
�	���D ��� ����� ����� ������ 	� �	��

�����5� ��	� ����	�5 ��
��	>��% ��� ��
	����
��� �J�
�	���D �	���D� ���
�	�� �	��	�� �� ���
�������	�� �� ��� ���& ������� ���
�	�� �	�� ��� �	5�
�����	�	�� ��� ���	
� 	���� �	5�� ��� �:���	����� ������� ���	��� ��	�5
��	� ����	�5 ��
��	>�� �	�� ���
���	����� #46�/)9 ����� ��	� �� �����
	� �	5 #G �� ��� �
��	�5 ��5� �� ��� ��
��	
� �	����� 	� ���D 36 ��%
���5���5� ���	
� ���D �	�� ;�&,#= �� ���� ��
�����D �K��� ��� �	�	�5
�� ��� ���	
�
��
8 �� �	�� ����� ����	��� �� ��� ������� �������� ����
��� ��
	����
��� ����
��
������ �� ���� ��� ��
� 	� �	5 #G ��� ����	�5
�D���� �J�
�	���D �	��	�5�	���� ��� 	��	�	��� ������ 	� ��� #46�/)9 �����
��	� ������5� ��� ��8 ���	���� �� �
� ����� 	� ��� ��	� 	� ����	���D ���
���% ��� �	�	��� ����� 	� ������� ������	���� ��	� 	� ���	����� ��
���� �	�	�5 ������ 	� ��� @��� ���	
� ����	���:�� ���
��� ���	�	��� 	�
��� ����� ���	�	��� ��� ������ �� ��� ����	�5 �D���� ��
������ ��
����% ���5���5� ���	��	
�
�����
������	�� ���������� ��� ����� 	� ���
#46�/)9 ����� ���	�	��� ���� ��� �:��
��� 4 *C��� ������� ��
	�5 ��
������	��� ��	�5 ��� ��� ��
��	>��� ��� ������ ���	�	�� 	� ����� ���	�
�	�� ������� ��	�5 �
� ������ �� 6 . ��% ��	
� 	� �� ��� ����� �� ���
���� �	�	�5 K	����

��	� ����	�5 �D���� ������ �����	�� �����	�� �� �����	�	��% �	5�
����	���% ��� ����5D ���	
� �	5��� ��	�5
���
� ������	
� ����	�5
5�� �� �	����% ��� ����	��� ���
����	
� �	�
� ���D *6 �� �� ���	
�

������ ����5D 	� ������ �� ��	55�� ��� ����	�5 �����	��% �� ���	��� ��	�
�D���� �J��� ��
�	
� ������	�� �� ���	�	���
������	�� ��
��	>��� ���
���D ���� ���8 ���	
� ����	���	�	�� �D
����	�5 ��� ��� �� ��� ��
��	
�
�	����� ������	���D% �����	�� �	5���
� �� �	���D�� 	� ��� ������
� ��

�	5 #4 �
����	
 �� �����	�� ���	
� ����	�5 �D���� ��� �����	�	�� ���	
� �	5��

� � �!"��� �" �+5

385

�:���	����� 	����	�	�	�� ��
� � L�
���	�5 ���� ��
� @�������
�	�
���
��	�5�% ������ ��	�	��� �	��	� 	��������������% �� ����� ���	��������
	���5���	�	�� ����� �
� ���� �� ���5�� �
� �	���
� ��

��������
�D ����
	�5 ��� ��
��	
� �	����� �	�� ����	�5 �	��� ���D �������

���� �� ��	��D �����	�5 ���
��
8 �	5�� ���� ���D ��� �� ���� ���
#66 �� ;���	
� &��D /������� ���*6.% �����
����� �����
�% ���8���D%
+�=)	5��� ����	�5 ����	���� ����
�	�5 # �)9 �� ����	��� �D ��	�5
����� �������� ���	
� ��	�
� �
�	��
����� ��� ��� ����	����D ����
�	�
����� �	�
� ��� ���& ����	�5 �	���� 	� �D�����	
 	� ��� �	�� ���
�	�% �	��� ����	�5 �D���� �D �����D �	5�� ���
���	�5 �� �	5	��
@����	�5 ��

���� ��� ��� ����	��� ����	�5 ���
�	��)������% ��� <
��
(������ 5������	�� ����	����D �	�
����� ��� �D�����	
 ����	�5 ���
�	���
��� �D �� ��	�� �� 	�������� 	��� ����	�5 �D���� ��� �J�
� �� ���
���	
� ��	�
� ����	�5 ���
�	��� ��� �� �� ��� ���	
� ��	�
� 5������	�� 	�
��� ���K�
� ��
������ 	�����	5�	��

+� ,��������

-� ��� ��������� ������ ���	
�	��� �� ������	
� ��	�
��� ���� ����
��� ����	���	�	�� &�� �� ��� ��� ���	
� ����5D ��>�	�������% �� ���	���
����� ���	
�� ��������� ��
�	
� ����
� �� ������% �	5������� �D�����

�	5 #G <��������� �� #46�/)9 ���	
� ����� ��	� ��	�5 ��� �����	�� ���	
� ����	�5 ��
��	>��

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

386

�����D	�5 ������	
� �	5�� ���
���	�5 ��

������ ���������	��� �� ���	
�
������	���:	�5% �
8�� ����	�5% �	��������� ������5�� �� �����
���
����	��% �� ���	
� ����	�5 �� ���� �� ��� ���
�	��� ��� ����� ���	
��
�
������� ��	�5 ��� ��� ���	
� 5������D)	5������� ���	
� ������8� ��

�����	
�	�� ���������� �D����� �� K��� ��� �� ��� ��� ����� �����
���	
�� �D ��� �	5�	@
�� 	��
� ������5� ���� ���	
� ��	�
� �
�	�
��
����� ��� ����D ���� 	���5����% ��� ������
�����
	� ������	� ��
����� ���	
�� ������� ���� ������� ���5���� �����
�����J�
�	�� ������	

	���5��	�� �� �
85	�5 ��
��	>��� 0���	�5 ��� ���	
� ��	�
�	�5 ����
�	��� �� # �)9 �� ��D���
���	���� �� ��
�����5	�5 �� ��� ������
�����
� ������� �:�����	�� �� ���	
����
��� ���	
� ����	���	�	�� �	��
������� �������� �	��� ;B# ��= ��
� � ���
���� ��	� ����	9�	�� �� 	��
��������� ����	�	��� ;-� *666= �D ����
� ��� ��	�
�	�5 ����� ��
����� 	������������	
 ���	
�� �� D	��� � ���	���D ���
��� �� ������	
�
��	�
���
���� �� ����	�5 ��� ����� ��� ����	��� 	� ������ ���	
�
�&< �D�����

-
�
�
��
�

�����% < % � ����% � '�8��� �� � 2	�� �����
�5 +���5 �� #.I4% #II4

���D% � � % 1 - � +��% 2 ,)�� �� � ���� �5 ���5 �
�	� *��,�5 �& III% #II4

+�����% & % � � <��	�5% 2 � ����% � & ���	�% � � 2���D% & "�����% � & 0�	��	��% � � 0����	� ��

& + ��5��� ������� �.) #C*.% #III

&��5% 2 �, % 2 � 2�5% � /���8% 0 � 0��
�� �� � ��	� �����
�5 +���5 �� #*.G% #IIG

&��5% 2 �, % � /���8% 2 � 2�5 �� 0 � 0��
�� ���� �#��5 "��#��5 +���5 / E.6% #IIG�

&��5% 2 �, % � /���8% 2 � 2�5 �� 0 � 0��
�� ���� �#��5 "��#��5 +���5 / #3I4% #IIG

&��5% 2 �, % � � ������% 0 ���	���% + +�������% & (���% � /���8 �� 0 � 0��
�� �����
�5 +���5 �&

*3#E% #IIE

&��5% 2 �, % � /���8% 2 � 2�5 �� 0 � 0��
�� ���� �#��5 "��#��5 +���5 �0 #6.I% #IIE�

&��5% 2 �, % � � ������% � /���8 �� 0 � 0��
�� ���� �#��5 "��#��5 +���5 �0 .IG% #IIE

&��5% 2 �, % � � ������% � /���8 �� 0 � 0��
�� ���� �#��5 "��#��5 +���5 �� CCE% *666

&	�9% � % � ,���	5 ��) / -���� �����
�5 +���5 �& E6.% #IIE

&	�9% � % � ,���	5 ��) / -���� ���� �#��5 "��#��5 +���5 �� 46% #III

&	�9% � % � ,���	5% + �
��	��% ! ��	��� ��) / -���� ���� �#��5 "��#��5 +���5 �� #36*% #III�

&��� " � �� & -��� 6��5 +���5 �� C4% #IEE

&���% " � % & � ��������� �� � 2 "D� �����
�5 +���5 �(*4G% #IEI

�	����% < �����
�5 +���5 �. #C6C% #II*

�	����% < % - 0	���� ��) / -���� �����
�5 +���5 �/ ##4G% #II.

���	�% � & % & < 0��	
8% & ������D% � � <��	�5% & � � &�	�� �� & < ��	�	� �5 +��#�1	�5

"��#��5 �� G4#% #IIC

/���8% � % � 0 ��8���J �� 0 � 0��
�� �����
�5 +���5 �0 ..I% #II3

/���8% � % � ��8���J �� 0 � 0��
�� �����
�5 +���5 �0 #.**% #II3

/���8% � % 2 � 2�5 �� 0 � 0��
�� �����
�5 +���5 �� GI3% #IIG

)��% 2 , % / ,��9% � < &��	�� �� � 0 ����� 6��5 *��,�5 ��� CEI% #II3

)���% � % < +�

	�/����% - 1�5�% � /����% 0 � �����% < &���8% � /	�	%) <��
��	�% �

<	88�����% < 1% 2 � ������% 2 � ����8K�� �� � ���
����� ���� �#��5 "��#��5 +���5 �0 #4C%

#IIE

)��5% < ' % ') +��5% � &	����% � 0)��	�5� �� 0 � &���D��� ���� �5 7,	��,� �����
�5 �0 ##**%

#II3

� � �!"��� �" �+5

387

���% � % " �5���% < ������%) �� ���8� �� & ���8� �����
�5 +���5 �� #ECG% #IIC

���% � % " �5���% - 0	����%) �� ���8�% & ���8�% - ����� �� + < -�	���� �����
�5 +���5 ��

GE*% #II4

�	���% < �� � <������� 6��5 +���5 �) **6% #II#

�	���% < % � � ���5�� �� & , ���9�� �����
�5 +���5 �0 #3EI% #II3

2�5�
�	%) �� � ����� �
�5 � ���� ��.� 3GG% #IIE

2�5% 2 � % � / +��5% � /���8 �� 0 � 0��
�� ����5 6��5 �(3#G% #II4

2�5% 2 � % � /���8 �� 0 � 0��
�� ����5 �5 9��# ����� �����
�5 ���5 + #*C% #II4�

2�5% 2 � % � / +��5% � /���8 �� 0 � 0��
�� ����5 6��5 �(#3EC% #II4

,�
�8% � 2 % 0 /���	�5% & / <���	�% 2 ��	�� �� & 0	�
��� �����
�5 +���5 �� EEG% #IIG

<��	�5% � � �� & � � &�	�� 6��5 +���5 �/ EEI% #II3

<��	�5% � � % & � � &�	��% & +����� �� � 2 ,�
�8 �����
�5 +���5 �0 GEG% #II3

<��	�5% � � % � & ���	�% � � 0����	� �� 2 � ���� �5 6��5 ��5 ��5 % �& .*63% #IIG

<�8% � �� � <��8 ����5 �#��5 +���5)� **E#% #II*

<�����% � 2 %) ��	% � "	��% / � ��������% � ������% � + +������D �� 0 � &���D��� ����

�#��5 "��#��5 +���5 �� ..#% #III

<	88�����% � % < 1% " ����8����% � &������% + ����5�����% � � � 0�������% � , &�	�����% 2 �

����8K��% < /�������� �� - 1� ����� 6:*M/�% �� &	�5�% +�% #IIC

"8���% � �� 2 �K	� ���5 �5 ����5 �#��5 �(,#3*4% #II4

"8���% � % ' !��� �� 2 �K	� ���� �#��5 "��#��5 +���5 �0 #CGC% #IIE

"�����% � 0 �� " � &��� �����
�5 +���5 �+ *63% #II#

"��5	% � % � -�% ' �8���	 ��) 2�5�
�	 6��5 +���5 �� #*#*% #IIE

"	�����% � " % � � �����9% 2 �����	��% & � 1��5��8�% (� +���% 0 �)���� �� 	� 6:*M�� ���3

��	���� �	��
�% ���	����% <&% *666

"���9D8% � �� 0 � 0��
�� ..�� ����
�	���	� ������,� � *��,��
 �
�#�����,
�% ��� <��

5���	�% ,	5���% ���D% #IIC

�M"�	��% � - �� � 0 -��� �����
�5 +���5 �) *66E% #II6

���	
� &��D /������� ���*6.% �����
����� �����
�% ���8���D% +�

����8% 2 6��5 +���5 . 3G#% #IE.

0���% " � % 2 ,)�� �� 2 � ���
����
� 6��5 +���5 �� #344% #II4

0���% " � % 2 ,)�� �� 2 � ���
����
� ����5 6��5 �+ *E.#% #IIE

0���	��% 0 � �� 0 � 0��
�� �5 +��#�1	�5 "��#��5 + IE.% #IEI

������% � � % 2 �, &��5% 0 ���	���% � /���8 �� 0 � 0��
�� �����
�5 +���5 �(#6IG% #III

������% � � % + +�������% 0 ���	���% � /���8 �� 0 � 0��
�� +�6�M��% �	� /����% 0����� �	
�%

*666

���% � % ' <	D����% � 2��8 �� 2)5	���� �5 +��#�1	�5 "��#��5 �) IGG% #IIE

���% � - % � ' '� �� 0 � 0��
�� ����5 6��5 �) .#3*% #IIG

��8���J% � 0 % 0 � 0��
��% � /���8 �� < 2�� 6�� �
�5 � �#����� �� �1���#���% ;-��	�5���%

&+% #II.=% 0&�3 �) #II. ��8���J% � 0 % 0 � 0��
��% � /���8 �� < 2�� ���� �#��5 "��#��5

+���5 (GEG% #II.

�����%) � ���� "
	��5 *��5 ,��0 #C.% #IG#

��9�8	% 2 % 2 �����8	% � "	��	 �� < ������	 �����
�5 +���5 �0 #C6#% #II3

�K	�% 2 % � "8���% ' !���% � ��8	% � ��5	����% � 2��% � ��	���%))�8�D�% �

����8	 �� � ��8	 ���*� "
	��5 �����
�5 1.��, ICI% *666

��5% � < �� 2 � ����� ���� �5 7,	��,� �����
�5 �& #*4.% #IIE

���	���% 0 % � /���8% � � ������% 2 �, &��5% � ' '� �� 0 � 0��
�� �5 +��#�1	�5 "��#��5 �) *#4I%

#IIE

���	���% 0 % 2 �, &��5% � /���8 �� 0 � 0��
�� ���� �#��5 "��#��5 +���5 �� ##E.% #III

���	���% 0 % � � ������% � /���8 �� 0 � 0��
�� 6��5 *��,�5 �+(.4C% *666

���	���% 0 % � /���8 �� 0 � 0��
�� 6��5 *��,�5 �+� #6#% *666�

���8�% < % - & (���5% � <����5% < ����� �� � ���� �5 +��#�1	�5 "��#��5 �& #IGI% #II4

-�% � 6��5 7,	��,� �����
�5 �� 3C.% *666

-������% & % � 2��
�% � �K����% + ��9% � &5��� �� < ����� ���� �#��5 "��#��5 +���5 ��

..*% *666

'��% � % 2 ��9�8	 �� < "89� �����
�5 +���5 �0 #I44% #II3

�"�������<����+ !,������� ��������& �0��+�, �-��+)��

388

'�% � ' % 0 ���	���% � � ������% 2 �, &��5% & (���% � /���8 �� 0 � 0��
�� ���� -��
 �. *E%

#IIE

(���% & %)D��	� ���	
� �&<?-&< ������8 ��
�����5D �� �
�	��
�����
�������� �� ����D����

����������� �� �����
��	� �������
��� ���� % 0�	�
���� !�	����	�D� 0�	�
����% "�% *666

(���% & ' % 2 � 2�5% � /���8 �� 0 � 0��
�� �5 +��#�1	�5 "��#��5 �+ *IE% #III

� � �!"��� �" �+5

389

ryanp

1 January 2000

Ž .Optics Communications 173 2000 101–106
www.elsevier.comrlocateroptcom

All-optical clock and data separation technique for asynchronous
packet-switched optical time-division-multiplexed networks

Paul Toliver), Ivan Glesk, Paul R. Prucnal
Department of Electrical Engineering, Princeton UniÕersity, Princeton, NJ 08544, USA

Received 22 July 1999; accepted 17 September 1999

Abstract

We propose and experimentally demonstrate an all-optical technique for separating a clock synchronization pulse from an
Ž .optical time-division-multiplexed OTDM 100 Gbrs data packet. The technique is based on an all-optical switching device

combined with optical feedback. This approach removes limitations found in other techniques such as those that are sensitive
to long strings of zeroes in the data packet. q 2000 Elsevier Science B.V. All rights reserved.

Keywords: OTDM; Packet switching; Synchronization

1. Introduction

One of the key challenges to be solved in pho-
tonic packet-switched networks based on optical

Ž .time-division multiplexing OTDM is the synchro-
nization of the ultra-high-speed packets with the
control processing at the network nodes. This is
necessary not only for the extraction of the packet
routing bits in the packet header as illustrated in Fig.
1 but also for the detection of the packet payload
once it finally reaches its destination node. Gener-
ally, this synchronization can be accomplished for
asynchronous packet-switched networks by sending
at least one optical clock synchronization pulse with
each packet transmitted. The techniques for multi-

) Corresponding author. Tel.: q1-609-258-2041; fax: q1-609-
258-2158; e-mail: ptoliver@ee.princeton.edu

plexing the clock pulse with each packet can be
divided into five categories including space, wave-
length, polarization, amplitude, and time-division ap-
proaches. Note that we will not discuss synchronous
clock recovery techniques such as phase lock loops,
injection locking and other approaches that are appli-
cable only to synchronous optical TDM networks.

Space-division multiplexing of the clock pulse
and data packet is the easiest to implement. The
clock is simply carried on a separate transmission
fiber from the data packets. Of course, there are a
number of practical implementation issues that com-
plicate such a design. For example, environmental
effects such as slow temperature variations may ef-
fect the fibers unequally, thereby causing a time-
varying differential delay between the clock and
data, which is difficult to compensate. The use of
blown fiber, which is present in some existing instal-

w xlations, can minimize these types of effects 1 , but

0030-4018r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0030-4018 99 00579-9

390

()P. ToliÕer et al.rOptics Communications 173 2000 101–106

Fig. 1. Conceptual block diagram of optical TDM network routing
node architecture including subsystem for all-optical packet data
and clock separation.

the cost of installing a separate clock fiber for each
network node in new installations may be prohibitive
or even impractical for wide area networks. Wave-
length-division multiplexing of clock and data has
been used in some research testbeds based upon

w xoptical TDM 2 . However, due to the effects of
chromatic dispersion, this approach is only practical
for single-hop networks such as point-to-point links
or broadcast-and-select star networks where the path
lengths between nodes can be pre-determined. It can
not be applied easily to asynchronous packet-
switched networks since the optical path length
through which a packet travels is non-deterministic.
Therefore, the relative delay between the clock and
data will also be random. Some of the highest ca-
pacity research demonstrations of packet-switched
optical TDM have used an orthogonal polarization
alignment of the clock and data for system synchro-

w xnization 3 . This approach becomes limited in larger
networks since it is difficult to maintain the correct
polarization throughout the system due to polariza-

Ž .tion mode dispersion PMD and other nonlinear
effects. Another synchronization approach is to use a
higher intensity for the optical clock pulse to differ-

w xentiate it from the data 4 . In this approach, how-
ever, the clock pulse amplitude and its position
become difficult to maintain in long distance trans-
mission due to the larger impact of fiber nonlineari-
ties.

The last synchronization technique, time-division
multiplexing of clock and data, is used as the basis
for the approach taken in this work. Two other
time-division approaches have been explored re-
cently by others. The first technique uses fractional

w xbit spacing in order to derive a sync pulse 5 . The

second technique is a self-synchronization approach
that positions the clock pulse at the head of the
packet in time and uses a fast saturated, slowly
recovery gain medium followed by an intensity dis-

w xcriminator to recover the clock 6 . However, this
technique suffers from the occurrence of false syn-
chronization pulses created with data packets having
long strings of zeroes followed by a one. Also, in
both of these time-division approaches, although
synchronization is achieved, the clock pulse is not
completely separated from the data packet. For the

w xmulti-hop routing protocol we have proposed 7 , not
only is it important to generate a reference clock
pulse for synchronization, but it is also necessary to
separate the clock pulse completely from the data
packet. This is required so that the clock can be
repositioned with respect to the data packet for the
next hop in the network. In an attempt to solve some
of these issues for multi-hop optical TDM networks,
we are proposing the use of the all-optical clock and
data extraction unit described in the next section.

2. Clock and data extraction device

The proposed clock and data extraction unit, illus-
trated in Fig. 2, is composed of a semiconductor-
based nonlinear interferometer, such as the terahertz

Ž . w xoptical asymmetric demultiplexer TOAD 8 , com-
w xbined with optical feedback 9 . The TOAD device,

as shown in the schematic of Fig. 2, consists of an
optical loop mirror combined with a semiconductor

Ž .optical amplifier SOA offset from the center of the
loop by D x. Data pulses entering the TOAD are split
at the 50:50 coupler into two counter-propagating
pulses that travel in opposite directions around the
loop. In the absence of a clock pulse and for rela-
tively low data pulse energies compared to the SOA
saturation energy, the two data pulses experience the
same relative phase shift. When they recombine at
the 50:50 coupler, the interference condition is such
that they are reflected back to the input of the device.
If instead a high energy clock pulse is coupled into
the loop, the asymmetry of the SOA within the loop
creates a differential refractive index, and therefore a
differential phase shift, that is seen by the two
counter-propagating pulses. If the SOA parameters
and clock energies are chosen so that the relative

391

()P. ToliÕer et al.rOptics Communications 173 2000 101–106

Fig. 2. All-optical clock and data extraction unit. BPF: bandpass filter, PC: polarization controller, PBS: polarizing beam splitter, PDFFA:
praseodymium-doped fluoride fiber amplifier, SOA: semiconductor optical amplifier.

phase shift between the counter-propagating pulses is
equal to p, the pulse can be transmitted to the output
of the device.

Therefore, the TOAD is capable of creating fast
switching windows in time for the processing of
ultrafast optical pulse streams. The size of this
switching window is determined by the offset D x of
the SOA from the center of the loop and is equal to
2D xrc , where c is the speed of light in fiber. Byf f

making the SOA offset small, a single pulse can be
demultiplexed from an ultrafast packet. By making
the offset large an entire packet can be switched. In
order to describe the principle of our proposed clock
and data separation technique, refer to the timing
diagram shown in Fig. 3. Each packet of data is
preceded by an equal amplitude clock pulse that is
spaced t ahead of the packet in time and can havecp

the same polarization, wavelength, and pulse ampli-
tude as the optical data packet pulses. This sync
pulse is the first to enter the TOAD device, and since

Fig. 3. Timing diagram for illustrating the proposed clock and
data separation technique.

no clock pulse is present within the loop, the pulse is
reflected from the loop. By feeding the reflected
pulse back to the clock port of the TOAD and
amplifying it to a higher pulse energy, it can be used
to open a wide switching window to let the remain-
der of the packet data pass to the data output of the
TOAD. The temporal width of the switching win-
dow, t , must be large enough to switch the entiresw

packet as shown in Fig. 3. Therefore, with this
approach, the synchronization clock pulse is sent to

Žthe clock output port while the data packet with the
.clock pulse completely removed is sent to the data

output port. By using a wide optical gating window
to switch the entire data packet, this clock and data
separation technique is insensitive to long strings of
zeroes in the data packet.

3. Experimental setup and results

To demonstrate the principle of our proposed
clock and data separation technique, we have con-
structed the setup illustrated in Fig. 2. A 1.3 mm
solid-state laser was used as a source of 2 ps optical
pulses that were generated at a 100 MHz rate. An

w xoptical packet compression device 10 enabled us to
create arbitrary 16-bit data packets with only 10 ps
bit spacing or effectively a 100 Gbrs packet bit rate.
The TOAD was constructed using a 500 mm long
SOA having a bias current of 40 mA. Polarizing

Ž .beam splitters PBS were used to couple the clock
pulse into and out of the loop. Pulses reflected from
the TOAD were amplified by a praseodymium-doped

Ž .fluoride fiber amplifier PDFFA and filtered by a 3

392

()P. ToliÕer et al.rOptics Communications 173 2000 101–106

Ž .Fig. 4. Top panel Scan of narrow TOAD switching window
Ž .FWHMs12 ps taken with SOA close to the loop center;
Ž .middle panel scan of wide TOAD switching window for gating

Ž .an entire 16-bit 100 Gbrs OTDM packet FWHMs165 ps ; and
Ž .lower panel scan of a 16-bit 100 Gbrs packet using the TOAD
with a narrow switching window. The packet was encoded with
alternating ones and zeroes.

Ž .nm optical bandpass filter BPF before being fed
back to the clock input port of the TOAD at an
orthogonal polarization to the data packet. Both the
clock and data packet outputs of the TOAD were

Ž .monitored with relatively low-bandwidth 125 MHz
photodetectors.

The size of the TOAD switching window can be
easily changed by setting the appropriate offset of
the SOA from the center of the fiber loop. Depend-
ing upon the application, the window can be made
narrow for demultiplexing a single packet bit or can
be made wider for switching an entire packet. We
characterized its profile for two different SOA off-
sets using a time-domain spectroscopy approach by

sending a data pulse into the data input port and
positioning a clock pulse relative to the data pulse
using an optical delay stage. The output of the
TOAD is then recorded with respect to the clock

Ž .position in time. Fig. 4 top panel shows the experi-
mental results of the window scan for the case when
the SOA is close to the center of the fiber loop

Ž .resulting in a full width half maximum FWHM
window size of 12 ps. The SOA offset was then
increased to create a switching window having a
width of approximately 165 ps as shown in Fig.
Ž .4 middle panel . The slow decrease in the switching

window amplitude as a function of time is due to
carrier-recovery dynamics occurring within the SOA
w x8 . Finally, using the TOAD with the narrow switch-
ing window, we were able to measure a 16-bit, 100

Ž .Gbrs data packet as illustrated in Fig. 4 lower panel .
Note that although this packet is encoded with alter-
nating ones and zeroes, the packet compression de-
vice is capable of creating any arbitrary 16-bit, 100
Gbrs packet. Also note that the wide TOAD switch-

Ž .ing window shown in Fig. 4 lower panel is large
enough to switch this entire packet of data. Finally,
the bit amplitude fluctuations seen in the packet scan
are due primarily to the unequal power splitting
ratios of the couplers used in the packet compression
device.

To illustrate the operation of the clock and data
extraction unit, a sequence of four packets were
injected into the device. As illustrated in Fig. 5, a
clock synchronization pulse precedes each data
packet. Because of the length involved in the feed-
back path, this pulse was placed t s160 ns aheadcp

of the packet. Each packet of data contains only a

Fig. 5. Sequence of four packets and corresponding clock pulses
used to illustrate operation of the clock and data separation unit.

393

()P. ToliÕer et al.rOptics Communications 173 2000 101–106

Ž . Ž . Ž .Fig. 6. Left panel Reflected top and transmitted bottom signal measured at the TOAD for the sequence of four packets illustrated in
Ž . Ž .Fig. 5 using the self-clocking mode of operation with optical feedback; and right panel same as left panel but using a separate clock

signal for packet data extraction and without optical feedback.

single 1-bit to make the switching operation clear,
but each bit is shifted in time to the next position
Ž .t s10 ps in each of the packets as shown in Fig.b

5. In order to distinguish between pulses that are
transmitted or reflected from the TOAD, the switch-
ing window is aligned so that only the last 14-bits of
the packet are gated.

Fig. 6 shows the experimental results for the
sequence of four packets shown in Fig. 5. The top
waveform is the reflected signal from the TOAD
measured at the clock output whereas the bottom
waveform is the transmitted output measured at the
data output. The first pulse seen in the reflected port
is the initial clock synchronization pulse for the
packet. Since the data pulse in the first packet falls
outside the TOAD switching window, it is also
reflected and seen at this port. Note also that there is
no transmitted signal at this moment in time. The
same sequence occurs for the second packet, but this
time, there is a small amount of pulse leakage seen at
the transmitted port due to the finite rising edge of

Ž .the TOAD switching window see Fig. 5 . As shown
in Fig. 5, the data pulses in the third and fourth
packet fall within the switching window and should
be switched out. As seen in the last two packet

Ž .sequences in Fig. 6 left panel , this is what occurs in
the experiment. First, the clock pulse is reflected and
next, the data pulse within the packet is sent to the
packet output. Note, in this case however, there is
some data pulse leakage seen at the reflected port
due to incomplete TOAD switching. The 12 dB
signal gain of the PDFFA used in the experiment is
insufficient to amplify the reflected pulse to induce
enough phase shift to completely switch the packet

data pulse to the transmitted port. This was verified
by using a separate clock pulse and removing the

Ž .feedback path. As shown in Fig. 6 right panel , this
Ž .clock pulse had sufficient energy 500 fJ to com-

pletely switch the data pulse and the reflected signal
was suppressed. Therefore, by using a higher gain
semiconductor optical amplifier combined with opti-
cal integration techniques, we believe the clock and
data separation unit can be practical for use in
asynchronous packet-switched OTDM networks with

w xcascaded all-optical switches 11 .

4. Conclusion

We have proposed a robust clock and data separa-
tion technique for asynchronous packet-switched net-
works based on an all-optical switching device com-
bined with optical feedback. In comparison to other
proposed techniques, this approach uses only a single
clock pulse separated in time by a fixed amount from
the data packet, but the pulse has the same wave-
length and amplitude as pulses in the data packet. In
the experimental demonstration, this separation in
time was limited to 160 ns due to the use of bulk
optical components. The use of semiconductor opti-
cal amplifiers combined with optical integration
technology can reduce this to a small fraction of the
packet duration. The device provided good suppres-
sion of the clock from the packet signal although the
clock signal contained some data signal leakage that
would limit the cascadability of an all-optical packet
switch configuration. We showed this leakage is
reduced, however, by using a clock pulse with suffi-

394

()P. ToliÕer et al.rOptics Communications 173 2000 101–106

Ž .cient energy only 500 fJ . Since this technique is
self-synchronizing, it allows for self-routing capabili-
ties in ultrafast asynchronous packet-switched net-
works based on optical TDM.

References

w x1 P. Gunning, J.K. Lucek, D.G. Moodie, K. Smith, D. Pitcher,
Ž .Q. Badat, A.S. Siddiqui, Electron. Lett. 34 1998 488.

w x Ž .2 Y. Shimazu, M. Tsukada, J. Lightwave Technol. 10 1992
265.

w x3 I. Glesk, J.P. Sokoloff, P.R. Prucnal, Electron. Lett. 30
Ž .1994 1322.

w x4 K.-L. Deng, I. Glesk, K.I. Kang, P.R. Prucnal, IEEE Photon.
Ž .Technol. Lett. 9 1997 830.

w x5 M. Shabeer, J.K. Lucek, K. Smith, D. Cotter, D.C. Rogers,
Ž .Electron. Lett. 31 1995 1476.

w x6 T.J. Xia, Y.H. Kao, Y. Liang, J.W. Lou, K.H. Ahn, O.
Boyraz, G.A. Nowak, A.A. Said, M.N. Islam, IEEE Photon.

Ž .Technol. Lett. 11 1999 269.
w x Ž .7 S.W. Seo, B.Y. Yu, P.R. Prucnal, Appl. Opt. 36 1997 3142.
w x8 J.P. Sokoloff, P.R. Prucnal, I. Glesk, M. Kane, IEEE Photon.

Ž .Technol. Lett. 5 1993 787.
w x9 K.J. Blow, R.J. Manning, A.J. Poustie, Opt. Commun. 134

Ž .1997 43.
w x10 K.-L. Deng, K.I. Kang, I. Glesk, P.R. Prucnal, Electron. Lett.

Ž .33 1997 1237.
w x Ž .11 I. Glesk, K.I. Kang, P.R. Prucnal, Electron. Lett. 33 1997

794.

395

1 March 2000

Ž .Optics Communications 175 2000 365–373
www.elsevier.comrlocateroptcom

Comparison of three nonlinear interferometric optical switch
geometries

Paul Toliver, Robert J. Runser), Ivan Glesk, Paul R. Prucnal
Department of Electrical Engineering, Princeton UniÕersity, Princeton, NJ 08544, USA

Received 8 November 1999; received in revised form 28 December 1999; accepted 29 December 1999

Abstract

We present an experimental study of ultrafast all-optical interferometric switching devices based upon a resonant
Ž .nonlinearity in a semiconductor optical amplifier SOA . We experimentally compare three configurations: one based upon a

Sagnac interferometer and the other two based upon Mach–Zehnder interferometers. By using picosecond pulses, we
characterize the switching window of the three devices in terms of both temporal width and output peak-to-peak amplitude.
These results are found to be in close agreement with a previously developed theoretical model. Since these nonlinear
interferometric switches use an active device as the nonlinear element, relatively low control pulse energy is needed to
perform switching as compared to other techniques. As a result, these optical switches are practical for all-optical
demultiplexing and ultrafast optical sampling for future lightwave communication systems. q 2000 Published by Elsevier
Science B.V. All rights reserved.

Keywords: Optical communications; Semiconductor optical amplifiers; Optical time division multiplexing; Terahertz optical asymmetric
demultiplexer

1. Introduction

Increasing the bandwidth capacity of lightwave
networks has recently received considerable attention
from the research community to address the growing
traffic demands on today’s communication systems.
All-optical switches and demultiplexers are an im-
portant development that enables high aggregate data
rates to be achieved in optical time division multi-

Ž .plexed OTDM networks. Semiconductor optical
Ž .nonlinearities with long recovery times G100 ps

have been used to demonstrate interferometric all-

) Corresponding author. Tel.: q1-609-258-2041; fax: q1-609-
258-2158; e-mail: rrunser@ee.princeton.edu

optical switches that promise to deliver switching
and demultiplexing at terabitrs rates. These nonlin-
earities are typically based upon a resonant excita-
tion in active or passive semiconductor nonlinear
waveguides or optical amplifiers. Extensive experi-

w x w xmental 1–5 and theoretical 6–9 analysis has been
performed on various interferometric configurations
of these devices. Due to the compact nature of these
devices, many have been integrated indicating their
practicality for future communication systems
w x10,11 . Optical switches which use an active semi-

Ž .conductor optical amplifier SOA as the nonlinear
switching element have performed efficient switch-

w xing demonstrations 12 using low control pulse en-
Ž .ergy 250 fJ as compared to passive devices. As a

0030-4018r00r$ - see front matter q 2000 Published by Elsevier Science B.V. All rights reserved.
Ž .PII: S0030-4018 00 00484-3

396

()P. ToliÕer et al.rOptics Communications 175 2000 365–373

consequence, this paper focuses on the SOA-based
interferometric switches.

We present an experimental follow-up study to a
w xpreviously developed theoretical model 6 for three

different interferometric geometries that use a semi-
conductor resonant nonlinearity to achieve optical
switching. The performance of each device is evalu-
ated and compared based upon the temporal response
of the optical switch. By varying the switching win-
dow temporal size, both the relative output amplitude
and minimum achievable window duration can be
investigated for each geometry. We find that the
experimental results of this study are in close agree-
ment with the predicted values from the theoretical
model. Finally, we conclude with a summary of the
performance advantages of the three optical switches.

2. Optical switch geometries

Fig. 1 shows the three interferometric optical
switches that we investigate both experimentally and
theoretically. The first geometry, shown in Fig. 1,
upper panel, is a Sagnac interferometer with an SOA
offset from the center position of the fiber loop and
is known as a terahertz optical asymmetric demulti-

Ž . w xplexer TOAD 1 . In the absence of a control
signal, data pulses enter the fiber loop, pass through
the SOA at different times as they counterpropagate
around the loop, and recombine interferometrically at
the 50r50 coupler at the base of the loop. Since both
pulses see the same medium as they propagate around
the loop, the data is reflected back toward the source.
In the presence of the control signal, switching can
occur. The control signal energy is chosen to be at
least ten times the data pulse energy. When the
control signal is injected into the loop, it saturates
the SOA and changes its index of refraction. As a
result, a differential phase shift can be achieved
between the two counterpropagating data pulses to
switch the data pulses to the output port. A polariza-
tion or wavelength filter is used at the output to
reject the control signal and pass the switched data
signal. Since the SOA is slowly recovering, data
pulses that enter the switch immediately after the
control pulse both see the SOA in approximately the

same recovery state and do not experience a signifi-
cant differential phase shift. The temporal duration
of the switching window is determined by the offset
of the SOA, D x, from the center position of the
loop. As this offset is reduced, the switching window
size decreases. The size of the nominal switching
window duration, t , is related to the offset posi-win

Žtion by t s2D xrc where c is the speedwin fiber fiber
.of light in fiber .

The other two switch geometries shown in Fig. 1,
middle panel, and Fig. 1, lower panel, are both based
upon a Mach–Zehnder interferometer. In the absence
of the control signals, the Mach–Zehnder is balanced
in such a way as to send all data signals entering the

Ž .device to the reject port not shown on the figure .
When control pulses are injected into the interferom-
eter, a differential phase shift is briefly introduced
between the two arms of the interferometer causing a
data pulse to be switched to the output port. Similar
to the TOAD, subsequent data pulses that pass
through the switch see the slow recovery of both
SOAs and are rejected. The slight difference between
the two Mach–Zehnder geometries shown is with
respect to the propagation direction of control and
data signals. In the colliding pulse Mach–Zehnder
Ž .CPMZ shown in Fig. 1, middle panel, the data and
control signals counter-propagate through the inter-
ferometer. As a result, a filter is not needed at the
output port to reject the control signals. However,

Ž .the symmetric Mach–Zehnder SMZ in Fig. 1, lower
panel, requires a filter at the output port to reject the
control signals from the switched data signal since
data and control signals co-propagate through the
interferometer. Assuming the SOAs are positioned in
the same relative location within the interferometer,
the nominal switching window for both Mach–
Zehnder configurations is determined by the tempo-
ral control pulse separation, D t , of the signalscs

Control 1 and Control 2 prior to entering the interfer-
ometer such that t sD t .win cs

Although the nominal switching window size pro-
vides an estimate of the switching window temporal
duration, it does not account for the finite length of
the SOAs within the interferometer. While the SOA
length has little effect on the SMZ geometry, the
minimum achievable switching windows for both the
TOAD and CPMZ are constrained by the length of

w xthe SOAs 6 . By incrementally reducing the switch-

397

()P. ToliÕer et al.rOptics Communications 175 2000 365–373

Ž .Fig. 1. All-optical SOA-based interferometric switch geometries: upper panel: terahertz optical asymmetric demultiplexer TOAD , middle
Ž . Ž .panel: colliding-pulse Mach–Zehnder CPMZ , and lower panel: symmetric Mach–Zehnder SMZ .

ing window temporal duration of all three geome-
tries, we explore the effect of the SOA length on the
temporal response of the switches both theoretically
and experimentally in Sections 3 and 4.

3. Nonlinear interferometer model

In this section, we develop a theoretical model to
describe the operation of the three optical switch

geometries. This model, which is based on previous
w xwork 6 , is used in Section 4 to analyze the impact

of the effective switching offset on the optical
switching window performance. Note that although
this model is not a rigorous device-level model, it
does provide relatively good agreement between the
predicted optical switch performance and experimen-
tal data. Since the switch geometries discussed in
this paper are all based upon optical interferometry,

398

()P. ToliÕer et al.rOptics Communications 175 2000 365–373

the output signal of the switch can be described by
the following basic interferometric equation:

P tŽ .in
P t s G t qG tŽ . Ž . Ž .½out 1 24

y2 G t G t cos f t yf t .(Ž . Ž . Ž . Ž .Ž . 51 2 1 2

1Ž .
Ž .The input data signal is represented by P t , and itin

is assumed that the interferometer is balanced so that
there is initially no signal at the output. In the
presence of one or more control signals, the two data

Ž .signals signals 1 and 2 that interfere within the
interferometer experience a time-dependent gain,

Ž . Ž .G t , and phase shift, f t , as they traverse the1,2 1,2

SOA. By introducing some form of asymmetry within
the interferometer, either by appropriate timing of

Ž .the control pulse s or by careful positioning of the
Ž .nonlinear element s , the two signals can experience

different responses. This differential response results
in the input data signal being switched to the output
of the device.

For the simple model adopted here, the gain and
phase shift experienced by signals travelling through
the SOA is assumed to be described by the following
temporal responses:

`
X X XG t sG yDG h t P t y t d t 2Ž . Ž . Ž . Ž .H1,2 0 1,2 clk

y`

`
X X X

f t sDf h t P t y t d t . 3Ž . Ž . Ž . Ž .H1,2 1,2 clk
y`

Ž .The variable P t represents the control signalclk
Ž .whereas h t represents the impulse response of the

SOA. Also, G is the initial gain of the SOA and0

DG and Df represent the amount of change in gain
or phase when the control pulse traverses the SOA.
Depending upon the direction of propagation of the
data signal with respect to the control pulse, different

Ž .impulse response functions must be used in Eqs. 2
Ž .and 3 . For the case when the data and control

signals co-propagate, the following single time-con-
stant impulse response is assumed:

yt
h t sF t exp . 4Ž . Ž . Ž .co ž /t SOA

Ž .The step function, F t , accounts for the situation
when the data signal is either leading or trailing the

control pulse and t is assumed to be the domi-SOA

nant SOA recovery time constant. In contrast, the
length of the SOA must be taken into account for the
case when the data and control signals counter-prop-
agate with respect to each other. The impulse re-
sponse for the counter-propagating geometry is given
as:

exp ytrt c tŽ . lr2SOA SOA
h t s F xqŽ . Hcntr ž /l 2ylr2

=
y2 x

exp d x . 5Ž .ž /c tSOA SOA

In this equation, the step function accounts for the
intersection of the counter-propagating data and con-
trol signals. Finally, c is the speed of the lightSOA

through the SOA and l is its length.
Ž . Ž .Using Eqs. 1 – 5 , the switching windows of the

three optical switch geometries can be computed
using the following approach. Based upon the switch

Ž .geometry, the appropriate impulse responses, h t ,1,2

are computed for each of the data signals within the
Ž .interferometer. For the SMZ configuration, h t isco

used for both impulse responses; for the TOAD,
Ž .h t is used for one response and h is used forco cntr

Ž .the other; and finally, for the CPMZ, h t is usedcntr

for both responses. The selected impulse responses
are delayed from one another by the effective switch-
ing offset. Control pulses are convolved with each
response and the result is used to compute the differ-

Ž .ential gain and phase evolution described by Eqs. 2
Ž .and 3 . The output of the interferometer switch is

Ž .then calculated using Eq. 1 . Finally, in order to
take into account the finite temporal width of the
data signal, the data pulse is correlated with the
output response of the interferometer. The resulting
signal is normalized to the maximum output in order
to simplify the comparisons between the different
geometries as well as the experimental data. As in
previous work, the constants used in computing the
switching window performance are as follows: G s0

10, DGs5, Dfs0.5p, t s400 ps, ls500SOA

mm, and finally n s3.3. Pulses with GaussianSOA

temporal envelopes having a width of 1.6 ps are
assumed for both the data and control signals. A
comparison of the switching window performance
for the three switch geometries using both the theo-

399

()P. ToliÕer et al.rOptics Communications 175 2000 365–373

retical model developed here as well as experimental
techniques is provided in the next section.

4. Optical switch characterization

To experimentally evaluate the performance of
the three nonlinear interferometric optical switches,
fiber-based versions of each configuration were con-
structed from discrete components. The nonlinear
element used in each switch geometry is an Alcatel
1901 SOA biased at approximately 100 mA. Polar-
ization controllers are used internally within each
switch in order to align the interferometer for the
proper condition for interference.

Each configuration was characterized using the
test setup shown in Fig. 2. A 1.55 mm mode-locked

Ž .fiber laser MLL is used to generate a continuous
stream of 1.6 ps optical pulses at a 2.5 GHz rate. The
pulse stream is amplified by an erbium-doped fiber

Ž .amplifier EDFA and optically split into control
signals and data signals for injection into the optical

Ž .switch device-under-test DUT . For the SMZ and
ŽCPMZ switch geometries which require two control

. Ž .pulses an optical delay line ODL is used to set the
relative offset between the pulses to control the
desired switching window size. In the TOAD geome-
try, an optical delay line inside the interferometer is
used to change the SOA offset and set the switching
window. For the SMZ and TOAD configurations, it
is necessary to set orthogonal polarization states for

the input control and data pulses using polarization
Ž .controllers PC . This enables the separation of the

switched data signal from the control pulses at the
output of the switch using a polarization filter.

For each switch under evaluation, the data and
Ž .control pulse energies average powers are fixed at

Ž . Ž .4 fJ 10 mW and 50 fJ 125 mW , respectively,
when measured at the input facet of the SOAs inside
the interferometer. A mechanical vibrator is used to
quickly scan the data pulses in time over a 40 ps
range to map out the switching window of the device
under test. This technique provides a means of rapidly
characterizing the switching window. While the
TOAD is based upon the inherently stable Sagnac
interferometer, thermal variations in the optical fiber
cause the output of the fiber-based Mach–Zehnder
switches to fluctuate slowly in time. By performing
the scan at a rate faster than the thermal variations,
switching windows of the fiber-based Mach–Zehnder
switches can be obtained without resorting to com-

Žplex stabilization techniques. Note that thermal vari-
ations do not significantly affect the stability of any
of these interferometers if integrated devices with

.short optical path lengths are used.
The results of the TOAD optical switch character-

ization are described first. Using the test setup, ex-
perimental scans of the TOAD switching window
were taken for various offsets and the results are
summarized in Fig. 3, upper panel. The SOA posi-
tion within the loop is varied so that the effective
switching offset decreases from approximately 18 ps

Fig. 2. Experimental test setup for characterizing optical switches.

400

()P. ToliÕer et al.rOptics Communications 175 2000 365–373

Fig. 3. Upper panel: experimental window scans of the TOAD
optical switch, and lower panel: computed window scans using the
model described in the text.

down to 0 ps in 1.6 ps steps. As the switching offset
is initially decreased from a large offset, the window
width decreases by the same proportion although the
output amplitude remains relatively constant. At an
offset of approximately 10 ps, however, the ampli-
tude begins to decrease in direct proportion as well.
This amplitude decrease is a result of the finite
length of the SOA becoming a factor. At extremely
small offsets, the switching window width does not
decrease further since the finite data and control
pulse widths become the dominant limitation. This
trend continues until the effective switching offset is
0 ps at which point the switching window nearly
vanishes. The results of the numerical simulation for
the TOAD switching window, shown in Fig. 3,
lower panel, are in good agreement with the experi-
mental results. The long rising edge of the switching

window is due to the finite length of the SOA
whereas the sharp falling edge is only limited by the
data and control pulse widths. Also, the window
does not entirely disappear at zero effective switch-
ing offset as verified by the experimental data. Note,
however, that the tops of the experimental windows
for large offsets are not exactly flat as predicted in
the simulations. This and other differences may be
due to a variety of experimental nonidealities includ-
ing variations in the source pulse energy and detector
noise.

Under the same experimental conditions, similar
measurements were taken for the SMZ and CPMZ
switch geometries. The results of these scans are
shown in Fig. 4, upper panel, and Fig. 5, upper
panel. Due to its co-propagating nature, the SMZ has
the unique characteristic of sharp edges on both the

Fig. 4. Upper panel: experimental window scans of the SMZ
optical switch, and lower panel: computed window scans using the
model.

401

()P. ToliÕer et al.rOptics Communications 175 2000 365–373

Fig. 5. Upper panel: experimental window scans of the CPMZ
optical switch, and lower panel: computed window scans using the
model.

rising and falling sides of the switching window. In
contrast, since the CPMZ is a purely counter-propa-
gating geometry, both edges rise and fall more slowly
due to the finite SOA lengths. The simulated switch-
ing windows for the SMZ and CPMZ, shown in Fig.
4, lower panel, and Fig. 5, lower panel, also illustrate
these characteristics. There are a few noticeable dif-
ferences between the simulations and the experimen-
tal measurements. Although the tops of the experi-
mental SMZ switching windows are relatively flat
for large SOA offsets, the sense of the slope is
opposite relative to the simulated values. The change
in slope is a result of a 0.6 dB coupling variation
throughout the translation length of the mechanical
vibrator used to scan the data signal through the
switching window. Additionally, there is a change in
slope on the leading edge of the experimental win-

dows that does not appear in the simulations. The
source of this discrepancy is not fully understood at
this time and is under investigation. In order to
compare the results of the scans taken for the three
optical switch geometries, the window peak-to-peak
amplitude and FWHM were computed for each off-
set. The results of the amplitude measurements on
the experimental and theoretical switching windows
are summarized in Fig. 6, upper panel, and Fig. 6,
lower panel, respectively. As shown in these figures,
the CPMZ is the first switch to decrease in amplitude
as the effective switching offset decreases. The finite
SOA lengths in the counter-propagating geometry
cause this reduction in the output amplitude. In
contrast, the amplitude of the co-propagating SMZ

Fig. 6. Upper panel: measured peak-to-peak amplitude of experi-
mental window scans, and lower panel: computed amplitude using
the theoretical model.

402

()P. ToliÕer et al.rOptics Communications 175 2000 365–373

switch is relatively flat up to very small offsets when
the finite pulse widths finally become a factor. Fi-
nally, the TOAD geometry is effectively half co-
propagating, half counter-propagating so it lies
somewhere in the middle. One last interesting note is
that while the output amplitude of the SMZ and
CPMZ configurations decreases to zero at zero effec-
tive switching offset, the output amplitude of the
TOAD geometry does not. This can be seen in the
simulated results shown in Fig. 6, lower panel, and is
also verified experimentally by the data in Fig. 6,
upper panel.

Finally, the computed FWHM switching windows
for the different geometries are shown in Fig. 7. Fig.
7, upper panel, shows the width of the experimental
scans, whereas Fig. 7, lower panel, is computed

Fig. 7. Upper panel: measured full-width at half-maximum
Ž .FWHM window widths of experimental scans, and lower panel:
computed widths using the theoretical model.

using the theoretical model. The minimum detectable
switching window sizes measured for the experimen-
tal configurations of the SMZ, TOAD, and CPMZ
switches are 2.5 ps, 3.5 ps, and 8.3 ps, respectively.
These minimum switching window widths agree
closely with the minimum values predicted by the
theoretical model. When the switching offset is re-
duced further beyond the values shown in Fig. 7,
upper panel, the output amplitude is too small to
accurately compute the window width. While the
theoretical trend of the window sizes agrees well
with the experimental data for the TOAD and SMZ,
the experimental data for the CPMZ does not match
the simulation as well for small switching offsets. A
possible explanation for this difference is that there
is greater experimental error in the measurement of
the CPMZ window size since the output signal from

Ž .the CPMZ see Fig. 5, upper panel is roughly half
that of the TOAD and SMZ and, therefore, closer to
the noise floor of the detector. The lower output
signal of the CPMZ is due to additional splitting
losses experienced by the switched output signal for
a given data pulse energy. Furthermore, the simple
theoretical model used in this study may not ade-
quately account for other physical device level ef-
fects that may influence the switching behavior ob-
served in the experimental trend.

5. Conclusion

In conclusion, we have characterized the switch-
ing response of three different geometries of ultrafast
nonlinear interferometric optical switches. Although
there are small deviations, our experimental results
show good agreement with a simple impulse re-
sponse numerical model. Further experimental inves-
tigations and refinements of the numerical model to
include more detailed physical effects, such as ultra-
fast semiconductor optical nonlinearities, may ac-
count for the differences observed between theory
and experiment. Of all the geometries considered,
the SMZ switch exhibits the best performance in
terms of the minimum switching window width and
output peak-to-peak amplitude. The performance of
the CPMZ switch, on the other hand, is somewhat
limited by the counter-propagating geometry and
finite SOA lengths. However, it has the advantage
that it is not necessary to reject the control signal at

403

()P. ToliÕer et al.rOptics Communications 175 2000 365–373

the output port. Finally, the TOAD has nearly com-
parable performance to the SMZ but is an inherently
balanced interferometer unlike the two fiber-based
Mach–Zehnder geometries used in this study. The
control pulse energy requirements of all three de-

Žvices studied are extremely low -50 fJ at the SOA
.facet due to the active nature of the nonlinear

elements used in the interferometers. This is at least
an order of magnitude less than the energy required
by passive structures. Although this study only con-
sidered fiber-based interferometric switches, these
results apply equally to integrated devices based on
similar geometries.

References

w x1 J.P. Sokoloff, P.R. Prucnal, I. Glesk, M. Kane, IEEE Photon.
Ž .Technol. Lett. 5 1993 787.

w x2 S. Nakamura, Y. Ueno, K. Tajima, IEEE Photon. Technol.
Ž .Lett. 10 1998 1575.

w x3 N.S. Patel, K.L. Hall, K.A. Rauschenbach, Opt. Lett. 21
Ž .1996 1466.

w x4 A.D. Ellis, D.M. Patrick, D. Flannery, R.J. Manning, D.A.O.
Ž .Davies, D.M. Spirit, J. Lightwave Technol. 13 1995 761.

w x Ž .5 M. Eiselt, W. Pieper, H.G. Weber, Electron. Lett. 29 1993
1167.

w x6 K.I. Kang, T.G. Chang, I. Glesk, P.R. Prucnal, Appl. Opt. 35
Ž .1996 417.

w x7 R.J. Manning, A.D. Ellis, A.J. Poustie, K.J. Blow, J. Opt.
Ž .Soc. Am. B 14 1997 3204.

w x8 N.S. Patel, K.L. Hall, K.A. Rauschenbach, Appl. Opt. 37
Ž .1998 2831.

w x Ž .9 S. Nakamura, K. Tajima, Jpn. J. Appl. Phys. 35 1996
L1426.

w x10 J. Leuthold, P.-A. Besse, E. Gamper, M. Dulk, S. Fischer, G.
Ž .Guekos, H. Melchoir, J. Lightwave Technol. 17 1999 1056.

w x11 E. Jahn, N. Agrawal, M. Arbert, H.-J. Ehrke, D. Franke,
Ž .Electron. Lett. 31 1995 1857.

w x12 K.-L. Deng, R.J. Runser, P. Toliver, C. Coldwell, D. Zhou, I.
Ž .Glesk, P.R. Prucnal, Electron. Lett. 34 1998 2418.

404

